Fubini for continuous functions over intervals

We first prove the following theorem for continuous functions.

Theorem 1. Let $f(\boldsymbol{x})$ be continuous on a compact interval $I=[a, b] \times[c, d]$. Then

$$
\begin{equation*}
\int_{[a, b] \times[c, d]} f(x, y) \mathrm{d}(x, y)=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) \mathrm{d} y\right] \mathrm{d} x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) \mathrm{d} x\right] \mathrm{d} y \tag{1}
\end{equation*}
$$

Proof. As $f(x, y)$ is continuous, for every fixed x_{0} and fixed $y_{0}, f\left(x_{0}, y\right)$ and $f\left(x, y_{0}\right)$ are continuous. Furthermore,

$$
\begin{equation*}
\int_{c}^{d} f(x, y) \mathrm{d} y \text { and } \int_{a}^{b} f(x, y) \mathrm{d} x \tag{2}
\end{equation*}
$$

are also continuous. Thus all the above integrals are well-defined.
We prove

$$
\begin{equation*}
\int_{[a, b] \times[c, d]} f(x, y) \mathrm{d}(x, y)=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) \mathrm{d} y\right] \mathrm{d} x \tag{3}
\end{equation*}
$$

and the other equality is similar. Wlog assume $a=c=0, b=d=1$.
Fix any $\varepsilon>0$. Since f is continuous on $[0,1] \times[0,1]$ it is uniformly continuous and there is $\delta>0$ such that for any $\|\boldsymbol{x}-\boldsymbol{y}\|<\delta$,

$$
\begin{equation*}
|f(\boldsymbol{x})-f(\boldsymbol{y})|<\varepsilon \tag{4}
\end{equation*}
$$

Now take $n \in \mathbb{N}$ such that $1 / n<\delta / \sqrt{2}$ and divide $[0,1] \times[0,1]$ into squares of the form $I_{i j}:=[i h$, $(i+1) h) \times[j h,(j+1) h)$ for $i, j \in \mathbb{Z}$.

Then we have

$$
\begin{equation*}
\forall i, j, \quad \sup _{I_{i j}} f-\inf _{I_{i j}} f<\varepsilon \tag{5}
\end{equation*}
$$

Now define

$$
\begin{equation*}
g(x, y):=\sup _{I_{i j}} f, h(x, y):=\inf _{I_{i j}} f, \quad(x, y) \in I_{i j} \tag{6}
\end{equation*}
$$

We have

$$
\begin{equation*}
\int_{I} g(x, y) \geqslant \int_{I} f(x, y) \geqslant \int_{I} h(x, y), \quad \int_{I} g(x, y)-\int_{I} h(x, y)<\varepsilon \tag{7}
\end{equation*}
$$

Now it can be checked through direct calculation that

$$
\begin{equation*}
\int_{I} g(x, y)=\int_{0}^{1}\left[\int_{0}^{1} g(x, y) \mathrm{d} y\right] \mathrm{d} x, \quad \int_{I} h(x, y)=\int_{0}^{1}\left[\int_{0}^{1} h(x, y) \mathrm{d} y\right] \mathrm{d} x \tag{8}
\end{equation*}
$$

Fix $x=x_{0}$. We have

$$
\begin{equation*}
g\left(x_{0}, y\right) \geqslant f\left(x_{0}, y\right) \geqslant h\left(x_{0}, y\right) \tag{9}
\end{equation*}
$$

therefore

$$
\begin{equation*}
\int_{0}^{1} g\left(x_{0}, y\right) \mathrm{d} y \geqslant \int_{0}^{1} f\left(x_{0}, y\right) \mathrm{d} y \geqslant \int_{0}^{1} h\left(x_{0}, y\right) \mathrm{d} y \tag{10}
\end{equation*}
$$

for every $x_{0} \in[0,1]$. Consequently

$$
\begin{equation*}
\int_{0}^{1}\left[\int_{0}^{1} g(x, y) \mathrm{d} y\right] \mathrm{d} x \geqslant \int_{0}^{1}\left[\int_{0}^{1} f(x, y) \mathrm{d} y\right] \mathrm{d} x \geqslant \int_{0}^{1}\left[\int_{0}^{1} h(x, y) \mathrm{d} y\right] \mathrm{d} x . \tag{11}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\left|\int_{I} f(x, y)-\int_{0}^{1}\left[\int_{0}^{1} f(x, y) \mathrm{d} y\right] \mathrm{d} x\right|<\varepsilon \tag{12}
\end{equation*}
$$

and the conclusion follows from the arbitrariness of ε.

Theorem 2. Let $I \subseteq \mathbb{R}^{N}, J \subseteq \mathbb{R}^{M}$ be compact intervals and let $f(\boldsymbol{x}, \boldsymbol{y})$ be continuous on $I \times J$. Then

$$
\begin{equation*}
\int_{I \times J} f(x, y) \mathrm{d}(x, y)=\int_{I}\left[\int_{J} f(x, y) \mathrm{d} y\right] \mathrm{d} x=\int_{J}\left[\int_{I} f(x, y) \mathrm{d} x\right] \mathrm{d} y \tag{13}
\end{equation*}
$$

Proof. The proof is similar and is left as exercise.

Corollary 3. Let $f(\boldsymbol{x})$ be continuous on $I:=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{N}, b_{N}\right]$. Then we have

$$
\begin{equation*}
\int_{I} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{a_{1}}^{b_{1}}\left[\int_{a_{2}}^{b_{2}}\left[\cdots\left(\int_{a_{N}}^{b_{N}} f\left(x_{1}, \ldots, x_{N}\right) \mathrm{d} x_{N}\right) \cdots\right] \mathrm{d} x_{2}\right] \mathrm{d} x_{1} \tag{14}
\end{equation*}
$$

and the order of the integration can be arbitrarily changed.

Proof. Exercise.

Example 4. Let $A:=[0,1] \times[0,1]$. Calculate

$$
\begin{equation*}
\int_{A} x e^{x y} \mathrm{~d} x \mathrm{~d} y \tag{15}
\end{equation*}
$$

Solution. We write

$$
\begin{aligned}
\int_{A} x e^{x y} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{1}\left[\int_{0}^{1} x e^{x y} \mathrm{~d} y\right] \mathrm{d} x \\
& =\int_{0}^{1}\left[\int_{0}^{x} e^{z} \mathrm{~d} z\right] \mathrm{d} x
\end{aligned}
$$

$$
\begin{align*}
& =\int_{0}^{1}\left(e^{x}-1\right) \mathrm{d} x \\
& =e-2 \tag{16}
\end{align*}
$$

Exercise 1. Let $f \in C^{2}$. Let $I=[a, b] \times[c, d]$. Calculate

$$
\begin{equation*}
\int_{I} \frac{\partial^{2} f}{\partial x \partial y} \mathrm{~d} x \mathrm{~d} y \tag{17}
\end{equation*}
$$

Exercise 2. Calculate the followng.

$$
\begin{gather*}
\int_{I} e^{x+y} \mathrm{~d} x \mathrm{~d} y, \quad I=[0,1]^{2} ; \tag{18}\\
\int_{I} \frac{x^{2}}{1+y^{2}} \mathrm{~d} x \mathrm{~d} y, \quad I=[0,1]^{2} ; \tag{19}\\
\int_{I} x \sin (x y) \mathrm{d} x \mathrm{~d} y, \quad I=[0, \pi / 2] \times[0,1] . \tag{20}\\
\int_{I} \sin (x+y) \mathrm{d} x \mathrm{~d} y, \quad I=[0, \pi / 2]^{2} ; \tag{21}\\
\int_{I} \sqrt{\left|y-x^{2}\right|} \mathrm{d} x \mathrm{~d} y, \quad I=[-1,1] \times[0,2] ; \tag{22}
\end{gather*}
$$

Exercise 3. Let $I=[0,1]^{2}$. Calculate $\int_{I} f(x, y) \mathrm{d} x \mathrm{~d} y$ for the following $f(x, y)$:

$$
\begin{align*}
& f(x, y)= \begin{cases}1 & y \leqslant x^{2} \\
0 & y>x^{2} ;\end{cases} \tag{23}\\
& f(x, y)= \begin{cases}1-x-y & x+y \leqslant 1 \\
0 & x+y>1\end{cases} \tag{24}\\
& f(x, y)= \begin{cases}x+y & x^{2} \leqslant y \leqslant 2 x^{2} \\
0 & \text { elsewhere. }\end{cases} \tag{25}
\end{align*}
$$

Problem 1. (USTC2) Construct $B \subseteq \mathbb{R}^{2}$ such that the following are satisfied.

1. for every $a \in \mathbb{R}, B \cap\{x=a\}$ and $B \cap\{y=a\}$ both consist of at most one single point.
2. $\bar{B}=\mathbb{R}^{2}$.

Now define

$$
f(x, y)=\left\{\begin{array}{ll}
1 & (x, y) \in B \tag{26}\\
0 & \text { elsewhere }
\end{array} .\right.
$$

Prove that
a) Both

$$
\begin{equation*}
\int_{0}^{1}\left[\int_{0}^{1} f(x, y) \mathrm{d} y\right] \mathrm{d} x \text { and } \int_{0}^{1}\left[\int_{0}^{1} f(x, y) \mathrm{d} x\right] \mathrm{d} y \tag{27}
\end{equation*}
$$

exist and equal 0 ;
b) f is not integrable on $[0,1]^{2}$.

Fubini: The general case (Optional)

Two-variable Fubini

We still start from the two-variable case.

Theorem 5. Let $f(x, y): \mathbb{R}^{2} \mapsto \mathbb{R}$ be integrable on $I:=[a, b] \times[c, d]$. Further assume that for every $x \in[a, b]$, $f(x, y)$ as a function of y is Riemann integrable on $[c, d]$. Then the function

$$
\begin{equation*}
F(x):=\int_{c}^{d} f(x, y) \mathrm{d} y \tag{28}
\end{equation*}
$$

is Riemann integrable on $[a, b]$ and furthermore

$$
\begin{equation*}
\int_{I} f(x, y) \mathrm{d}(x, y)=\int_{a}^{b} F(x) \mathrm{d} x=\int_{a}^{b}\left[\int_{c}^{d} f(x, y) \mathrm{d} y\right] \mathrm{d} x \tag{29}
\end{equation*}
$$

If furthermore for every $y \in[c, d], f(x, y)$ as a function of x is Riemann integrable on $[a, b]$, then we can switch the order of integration:

$$
\begin{equation*}
\int_{a}^{b}\left[\int_{c}^{d} f(x, y) \mathrm{d} y\right] \mathrm{d} x=\int_{c}^{d}\left[\int_{a}^{b} f(x, y) \mathrm{d} x\right] \mathrm{d} y=\int_{I} f(x, y) \mathrm{d}(x, y) \tag{30}
\end{equation*}
$$

This theorem follows immediately from the following result which reveals what is really going on here.

Theorem 6. Let $f(x, y): \mathbb{R}^{2} \mapsto \mathbb{R}$ and $I:=[a, b] \times[c, d]$. Define two functions $\Phi(x)$ and $\phi(x)$ as follows:

$$
\begin{equation*}
\Phi(x):=U(f(x, \cdot),[c, d]), \quad \phi(x):=L(f(x, \cdot),[c, d]) \tag{31}
\end{equation*}
$$

Here $U(f(x, \cdot,[c, d]))$ and $L(f(x, \cdot),[c, d])$ denote the upper and lower integrals for the function $f(x, y)$ treated as a function of y alone (with x fixed). Then

$$
\begin{align*}
U(\Phi(x),[a, b]) & \leqslant U(f(x, y), I) \tag{32}\\
L(\phi(x),[a, b]) & \geqslant L(f(x, y), I) \tag{33}
\end{align*}
$$

Exercise 4. Prove Theorem 5 using Theorem 6.

Remark 7. From this theorem we see that two dimensional Riemann integrability puts strong restriction on the behavior of the function along every slice.

Exercise 5. Let $f(x, y): \mathbb{R}^{2} \mapsto \mathbb{R}$ be integrable on $I:=[a, b] \times[c, d]$. For any $\varepsilon>0$, Let $S_{\varepsilon}:=\{x \in[a, b] \mid f(x, y)$ as a function of y is not Riemann integrable on $[c, d]$ and $U(f,[c, d])-L(f,[c, d])>\varepsilon\}$. Then $\mu_{1}\left(S_{\varepsilon}\right)=0$ where μ_{1} is the one-dimensional Jordan measure. In other words, if $f(x, y)$ is integrable on I, then most of its "slices" are Riemann integrable.

Remark 8. Note that in the above exercise we cannot replace S_{ε} by $S:=\{x \in[a, b] \mid f(x, y)$ as a function of y is not Riemann integrable on $[c, d]\}$. See the problem below.

Problem 2. Let

$$
f(x, y):=\left\{\begin{array}{ll}
0 & x \in \mathbb{Q}, y \in \mathbb{Q} \tag{34}\\
\frac{1}{p} & x=\frac{r}{p},(p, r) \text { co-prime; } y \in \mathbb{Q}^{c} \\
\frac{1}{q} & x \in \mathbb{Q}^{c}, y=\frac{s}{q},(s, q) \text { co-prime } \\
0 & x \in \mathbb{Q}^{c}, y \in \mathbb{Q}^{c}
\end{array} .\right.
$$

Prove that $f(x, y)$ is Riemann integrable on $[0,1] \times[0,1]$. But for every $x \in[0,1] \cap \mathbb{Q}, f(x, y)$ is not Riemann integrable on $[0,1]$.

Proof. (of Theorem 6) Recall our results regarding "uniform partition". For any $n \in \mathbb{N}$, set $h_{1}:=\frac{b-a}{n}$ and $h_{2}:=\frac{d-c}{n}$. Let $I_{i j, h}:=\left[a+(i-1) h_{1}, a+i h_{1}\right] \times\left[c+(j-1) h_{2}, c+j h_{2}\right]$. Then we know that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i, j=1}^{n} f_{i j} h_{1} h_{2}=\lim _{n \rightarrow \infty} \sum_{i, j=1}^{n} F_{i j} h_{1} h_{2}=\int_{I} f(x, y) \mathrm{d}(x, y) \tag{35}
\end{equation*}
$$

where

$$
\begin{equation*}
f_{i j}:=\inf _{(x, y) \in I_{i j}, h} f(x, y), \quad F_{i j}:=\sup _{(x, y) \in I_{i j, h}} f(x, y) \tag{36}
\end{equation*}
$$

Now for each (i, j), we have

$$
\begin{equation*}
\forall(x, y) \in I_{i j, h}, \quad f_{i j} \leqslant f(x, y) \Longrightarrow f_{i j} h_{2} \leqslant L\left(f(x, y),\left[c+(j-1) h_{2}, c+j h_{2}\right]\right) \tag{37}
\end{equation*}
$$

Since this is true for all $x \in\left[a+(i-1) h_{1}, a+i h_{1}\right]$, we have

$$
\begin{equation*}
f_{i j} h_{1} h_{2} \leqslant L\left(L\left(f(x, y),\left[c+(j-1) h_{2}, c+j h_{2}\right]\right),\left[a+(i-1) h_{1}, a+i h_{1}\right]\right) \tag{38}
\end{equation*}
$$

Now summing over i, j we have

$$
\begin{equation*}
\sum_{i, j=1}^{n} f_{i j} h_{1} h_{2} \leqslant L(\phi(x),[a, b]) \tag{39}
\end{equation*}
$$

The other inequality can be proved similarly.
Exercise 6. Let $f: \mathbb{R} \mapsto \mathbb{R}, a<b<c$. Prove that

$$
\begin{equation*}
L(f,[a, b])+L(f,[b, c])=L(f,[a, c]) . \tag{40}
\end{equation*}
$$

General cases

The proof for the general case is similar.
Theorem 9. (Fubini) Let $f(\boldsymbol{x}, \boldsymbol{y})\left(\boldsymbol{x} \in \mathbb{R}^{M}, \boldsymbol{y} \in \mathbb{R}^{N}\right)$ be integrable on $I:=I_{1} \times I_{2}$ where $I_{1} \subseteq \mathbb{R}^{M}, I_{2} \subseteq \mathbb{R}^{N}$. Assume that for every $\boldsymbol{x} \in I_{1}$ the function $f(\boldsymbol{x}, \boldsymbol{y})$ as a function of \boldsymbol{y} only is integrable on I_{2}, then

$$
\begin{equation*}
\int_{I} f(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d}(\boldsymbol{x}, \boldsymbol{y})=\int_{I_{1}}\left[\int_{I_{2}} f(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d} \boldsymbol{y}\right] \mathrm{d} \boldsymbol{x} \tag{41}
\end{equation*}
$$

If furthermore for every $\boldsymbol{y} \in I_{2}$ the function $f(\boldsymbol{x}, \boldsymbol{y})$ as a function of \boldsymbol{x} only is integrable on I_{1}, then

$$
\begin{equation*}
\int_{I_{1}}\left[\int_{I_{2}} f(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d} \boldsymbol{y}\right] \mathrm{d} \boldsymbol{x}=\int_{I_{2}}\left[\int_{I_{1}} f(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d} \boldsymbol{x}\right] \mathrm{d} \boldsymbol{y}=\int_{I} f(\boldsymbol{x}, \boldsymbol{y}) \mathrm{d}(\boldsymbol{x}, \boldsymbol{y}) \tag{42}
\end{equation*}
$$

Exercise 7. Let $A:=\left\{(x, y, z) \mid x^{2}+y^{2}+z^{2} \leqslant 1\right\}$. Prove that

$$
\begin{equation*}
\mu(A)=\int_{-1}^{1}\left[\int_{-\sqrt{1-z^{2}}}^{\sqrt{1-z^{2}}}\left(\int_{-\sqrt{1-z^{2}-y^{2}}}^{\sqrt{1-z^{2}-y^{2}}} 1 \mathrm{~d} x\right) \mathrm{d} y\right] \mathrm{d} z \tag{43}
\end{equation*}
$$

