Fubini for continuous functions over intervals

We first prove the following theorem for continuous functions.

Theorem 1. Let $f(\mathbf{x})$ be continuous on a compact interval $I = [a, b] \times [c, d]$. Then

$$\int_{[a,b]\times[c,d]} f(x,y) \,\mathrm{d}(x,y) = \int_a^b \left[\int_c^d f(x,y) \,\mathrm{d}y \right] \mathrm{d}x = \int_c^d \left[\int_a^b f(x,y) \,\mathrm{d}x \right] \mathrm{d}y. \tag{1}$$

Proof. As f(x, y) is continuous, for every fixed x_0 and fixed y_0 , $f(x_0, y)$ and $f(x, y_0)$ are continuous. Furthermore,

$$\int_{c}^{d} f(x, y) \,\mathrm{d}y \text{ and } \int_{a}^{b} f(x, y) \,\mathrm{d}x \tag{2}$$

are also continuous. Thus all the above integrals are well-defined.

We prove

$$\int_{[a,b]\times[c,d]} f(x,y) \,\mathrm{d}(x,y) = \int_a^b \left[\int_c^d f(x,y) \,\mathrm{d}y \right] \mathrm{d}x \tag{3}$$

and the other equality is similar. Wlog assume a = c = 0, b = d = 1.

Fix any $\varepsilon > 0$. Since f is continuous on $[0, 1] \times [0, 1]$ it is uniformly continuous and there is $\delta > 0$ such that for any $||\boldsymbol{x} - \boldsymbol{y}|| < \delta$,

$$|f(\boldsymbol{x}) - f(\boldsymbol{y})| < \varepsilon.$$
(4)

Now take $n \in \mathbb{N}$ such that $1/n < \delta/\sqrt{2}$ and divide $[0, 1] \times [0, 1]$ into squares of the form $I_{ij} := [i h, (i+1)h) \times [jh, (j+1)h)$ for $i, j \in \mathbb{Z}$.

Then we have

$$\forall i, j, \qquad \sup_{I_{ij}} f - \inf_{I_{ij}} f < \varepsilon.$$
(5)

Now define

$$g(x,y) := \sup_{I_{ij}} f, \ h(x,y) := \inf_{I_{ij}} f, \qquad (x,y) \in I_{ij}.$$
(6)

We have

$$\int_{I} g(x,y) \ge \int_{I} f(x,y) \ge \int_{I} h(x,y), \qquad \int_{I} g(x,y) - \int_{I} h(x,y) < \varepsilon.$$
(7)

Now it can be checked through direct calculation that

$$\int_{I} g(x,y) = \int_{0}^{1} \left[\int_{0}^{1} g(x,y) \, \mathrm{d}y \right] \mathrm{d}x, \qquad \int_{I} h(x,y) = \int_{0}^{1} \left[\int_{0}^{1} h(x,y) \, \mathrm{d}y \right] \mathrm{d}x. \tag{8}$$

Fix $x = x_0$. We have

$$g(x_0, y) \ge f(x_0, y) \ge h(x_0, y) \tag{9}$$

therefore

$$\int_{0}^{1} g(x_{0}, y) \,\mathrm{d}y \ge \int_{0}^{1} f(x_{0}, y) \,\mathrm{d}y \ge \int_{0}^{1} h(x_{0}, y) \,\mathrm{d}y \tag{10}$$

for every $x_0 \in [0, 1]$. Consequently

$$\int_0^1 \left[\int_0^1 g(x,y) \, \mathrm{d}y \right] \mathrm{d}x \ge \int_0^1 \left[\int_0^1 f(x,y) \, \mathrm{d}y \right] \mathrm{d}x \ge \int_0^1 \left[\int_0^1 h(x,y) \, \mathrm{d}y \right] \mathrm{d}x. \tag{11}$$

This gives

$$\left| \int_{I} f(x,y) - \int_{0}^{1} \left[\int_{0}^{1} f(x,y) \, \mathrm{d}y \right] \mathrm{d}x \right| < \varepsilon$$
(12)

and the conclusion follows from the arbitrariness of $\varepsilon.$

Theorem 2. Let $I \subseteq \mathbb{R}^N$, $J \subseteq \mathbb{R}^M$ be compact intervals and let $f(\boldsymbol{x}, \boldsymbol{y})$ be continuous on $I \times J$. Then

$$\int_{I \times J} f(x, y) \,\mathrm{d}(x, y) = \int_{I} \left[\int_{J} f(x, y) \,\mathrm{d}y \right] \mathrm{d}x = \int_{J} \left[\int_{I} f(x, y) \,\mathrm{d}x \right] \mathrm{d}y.$$
(13)

Proof. The proof is similar and is left as exercise.

Corollary 3. Let $f(\mathbf{x})$ be continuous on $I := [a_1, b_1] \times \cdots \times [a_N, b_N]$. Then we have

$$\int_{I} f(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{x} = \int_{a_1}^{b_1} \left[\int_{a_2}^{b_2} \left[\cdots \left(\int_{a_N}^{b_N} f(x_1, \dots, x_N) \,\mathrm{d}x_N \right) \cdots \right] \mathrm{d}x_2 \right] \mathrm{d}x_1 \tag{14}$$

and the order of the integration can be arbitrarily changed.

Proof. Exercise.

Example 4. Let $A := [0, 1] \times [0, 1]$. Calculate

$$\int_{A} x \, e^{xy} \, \mathrm{d}x \, \mathrm{d}y. \tag{15}$$

Solution. We write

$$\int_{A} x e^{xy} dx dy = \int_{0}^{1} \left[\int_{0}^{1} x e^{xy} dy \right] dx$$
$$= \int_{0}^{1} \left[\int_{0}^{x} e^{z} dz \right] dx$$

$$= \int_{0}^{1} (e^{x} - 1) dx$$

= $e - 2.$ (16)

Exercise 1. Let $f \in C^2$. Let $I = [a, b] \times [c, d]$. Calculate

$$\int_{I} \frac{\partial^2 f}{\partial x \partial y} \,\mathrm{d}x \,\mathrm{d}y. \tag{17}$$

Exercise 2. Calculate the followng.

$$\int_{I} e^{x+y} \,\mathrm{d}x \,\mathrm{d}y, \qquad I = [0,1]^2; \tag{18}$$

$$\int_{I} \frac{x^2}{1+y^2} \,\mathrm{d}x \,\mathrm{d}y, \qquad I = [0,1]^2; \tag{19}$$

$$\int_{I} x \sin(xy) \, \mathrm{d}x \, \mathrm{d}y, \qquad I = [0, \pi/2] \times [0, 1].$$
(20)

$$\int_{I} \sin(x+y) \,\mathrm{d}x \,\mathrm{d}y, \qquad I = [0, \pi/2]^2; \tag{21}$$

$$\int_{I} \sqrt{|y - x^2|} \, \mathrm{d}x \, \mathrm{d}y, \qquad I = [-1, 1] \times [0, 2];$$
(22)

Exercise 3. Let $I = [0, 1]^2$. Calculate $\int_I f(x, y) dx dy$ for the following f(x, y):

$$f(x,y) = \begin{cases} 1 & y \leq x^2 \\ 0 & y > x^2 \end{cases};$$
(23)

$$f(x,y) = \begin{cases} 1-x-y & x+y \leq 1\\ 0 & x+y > 1 \end{cases},$$
(24)

$$f(x,y) = \begin{cases} x+y & x^2 \leq y \leq 2x^2 \\ 0 & \text{elsewhere.} \end{cases}$$
(25)

Problem 1. (USTC2) Construct $B \subseteq \mathbb{R}^2$ such that the following are satisfied.

1. for every $a \in \mathbb{R}, B \cap \{x = a\}$ and $B \cap \{y = a\}$ both consist of at most one single point.

2. $\bar{B} = \mathbb{R}^2$.

Now define

$$f(x,y) = \begin{cases} 1 & (x,y) \in B \\ 0 & \text{elsewhere} \end{cases}$$
(26)

Prove that

a) Both

$$\int_0^1 \left[\int_0^1 f(x,y) \,\mathrm{d}y \right] \mathrm{d}x \text{ and } \int_0^1 \left[\int_0^1 f(x,y) \,\mathrm{d}x \right] \mathrm{d}y \tag{27}$$

exist and equal 0;

b) f is not integrable on $[0,1]^2$.

Fubini: The general case (Optional)

Two-variable Fubini

We still start from the two-variable case.

Theorem 5. Let $f(x, y): \mathbb{R}^2 \to \mathbb{R}$ be integrable on $I := [a, b] \times [c, d]$. Further assume that for every $x \in [a, b]$, f(x, y) as a function of y is Riemann integrable on [c, d]. Then the function

$$F(x) := \int_{c}^{d} f(x, y) \,\mathrm{d}y \tag{28}$$

is Riemann integrable on [a, b] and furthermore

$$\int_{I} f(x,y) d(x,y) = \int_{a}^{b} F(x) dx = \int_{a}^{b} \left[\int_{c}^{d} f(x,y) dy \right] dx.$$
(29)

If furthermore for every $y \in [c, d]$, f(x, y) as a function of x is Riemann integrable on [a, b], then we can switch the order of integration:

$$\int_{a}^{b} \left[\int_{c}^{d} f(x, y) \,\mathrm{d}y \right] \mathrm{d}x = \int_{c}^{d} \left[\int_{a}^{b} f(x, y) \,\mathrm{d}x \right] \mathrm{d}y = \int_{I} f(x, y) \,\mathrm{d}(x, y).$$
(30)

This theorem follows immediately from the following result which reveals what is really going on here.

Theorem 6. Let $f(x, y): \mathbb{R}^2 \to \mathbb{R}$ and $I:=[a, b] \times [c, d]$. Define two functions $\Phi(x)$ and $\phi(x)$ as follows:

$$\Phi(x) := U(f(x, \cdot), [c, d]), \qquad \phi(x) := L(f(x, \cdot), [c, d]). \tag{31}$$

Here $U(f(x, \cdot, [c,d]))$ and $L(f(x, \cdot), [c,d])$ denote the upper and lower integrals for the function f(x, y) treated as a function of y alone (with x fixed). Then

$$U(\Phi(x), [a, b]) \leqslant U(f(x, y), I); \tag{32}$$

$$L(\phi(x), [a, b]) \ge L(f(x, y), I).$$
(33)

Exercise 4. Prove Theorem 5 using Theorem 6.

Remark 7. From this theorem we see that two dimensional Riemann integrability puts strong restriction on the behavior of the function along every slice.

Exercise 5. Let $f(x, y): \mathbb{R}^2 \to \mathbb{R}$ be integrable on $I := [a, b] \times [c, d]$. For any $\varepsilon > 0$, Let $S_{\varepsilon} := \{x \in [a, b] | f(x, y) \text{ as a function}$ of y is not Riemann integrable on [c, d] and $U(f, [c, d]) - L(f, [c, d]) > \varepsilon\}$. Then $\mu_1(S_{\varepsilon}) = 0$ where μ_1 is the one-dimensional Jordan measure. In other words, if f(x, y) is integrable on I, then most of its "slices" are Riemann integrable.

Remark 8. Note that in the above exercise we cannot replace S_{ε} by $S := \{x \in [a, b] | f(x, y) \text{ as a function} of y \text{ is not Riemann integrable on } [c, d] \}$. See the problem below.

Problem 2. Let

$$f(x,y) := \begin{cases} 0 & x \in \mathbb{Q}, y \in \mathbb{Q} \\ \frac{1}{p} & x = \frac{r}{p}, (p,r) \text{ co-prime}; y \in \mathbb{Q}^c \\ \frac{1}{q} & x \in \mathbb{Q}^c, y = \frac{s}{q}, (s,q) \text{ co-prime} \\ 0 & x \in \mathbb{Q}^c, y \in \mathbb{Q}^c \end{cases}$$
(34)

Prove that f(x, y) is Riemann integrable on $[0, 1] \times [0, 1]$. But for every $x \in [0, 1] \cap \mathbb{Q}$, f(x, y) is not Riemann integrable on [0, 1].

Proof. (of Theorem 6) Recall our results regarding "uniform partition". For any $n \in \mathbb{N}$, set $h_1 := \frac{b-a}{n}$ and $h_2 := \frac{d-c}{n}$. Let $I_{ij,h} := [a + (i-1)h_1, a+ih_1] \times [c + (j-1)h_2, c+jh_2]$. Then we know that

$$\lim_{n \to \infty} \sum_{i,j=1}^{n} f_{ij} h_1 h_2 = \lim_{n \to \infty} \sum_{i,j=1}^{n} F_{ij} h_1 h_2 = \int_I f(x,y) d(x,y)$$
(35)

where

$$f_{ij} := \inf_{(x,y)\in I_{ij,h}} f(x,y), \qquad F_{ij} := \sup_{(x,y)\in I_{ij,h}} f(x,y).$$
(36)

Now for each (i, j), we have

$$\forall (x,y) \in I_{ij,h}, \qquad f_{ij} \leqslant f(x,y) \Longrightarrow f_{ij}h_2 \leqslant L(f(x,y), [c+(j-1)h_2, c+jh_2]); \tag{37}$$

Since this is true for all $x \in [a + (i - 1)h_1, a + ih_1]$, we have

$$f_{ij}h_1h_2 \leq L(L(f(x,y), [c+(j-1)h_2, c+jh_2]), [a+(i-1)h_1, a+ih_1]).$$
(38)

Now summing over i, j we have

$$\sum_{i,j=1}^{n} f_{ij}h_1h_2 \leq L(\phi(x), [a, b]).$$
(39)

The other inequality can be proved similarly.

Exercise 6. Let $f: \mathbb{R} \mapsto \mathbb{R}$, a < b < c. Prove that

$$L(f, [a, b]) + L(f, [b, c]) = L(f, [a, c]).$$
(40)

General cases

The proof for the general case is similar.

Theorem 9. (Fubini) Let $f(\boldsymbol{x}, \boldsymbol{y})$ ($\boldsymbol{x} \in \mathbb{R}^M$, $\boldsymbol{y} \in \mathbb{R}^N$) be integrable on $I := I_1 \times I_2$ where $I_1 \subseteq \mathbb{R}^M$, $I_2 \subseteq \mathbb{R}^N$. Assume that for every $\boldsymbol{x} \in I_1$ the function $f(\boldsymbol{x}, \boldsymbol{y})$ as a function of \boldsymbol{y} only is integrable on I_2 , then

$$\int_{I} f(\boldsymbol{x}, \boldsymbol{y}) \,\mathrm{d}(\boldsymbol{x}, \boldsymbol{y}) = \int_{I_1} \left[\int_{I_2} f(\boldsymbol{x}, \boldsymbol{y}) \,\mathrm{d}\boldsymbol{y} \right] \mathrm{d}\boldsymbol{x}. \tag{41}$$

If furthermore for every $y \in I_2$ the function f(x, y) as a function of x only is integrable on I_1 , then

$$\int_{I_1} \left[\int_{I_2} f(\boldsymbol{x}, \boldsymbol{y}) \, \mathrm{d}\boldsymbol{y} \right] \mathrm{d}\boldsymbol{x} = \int_{I_2} \left[\int_{I_1} f(\boldsymbol{x}, \boldsymbol{y}) \, \mathrm{d}\boldsymbol{x} \right] \mathrm{d}\boldsymbol{y} = \int_{I} f(\boldsymbol{x}, \boldsymbol{y}) \, \mathrm{d}(\boldsymbol{x}, \boldsymbol{y}). \tag{42}$$

Exercise 7. Let $A := \{(x, y, z) | x^2 + y^2 + z^2 \leq 1\}$. Prove that

$$\mu(A) = \int_{-1}^{1} \left[\int_{-\sqrt{1-z^2}}^{\sqrt{1-z^2}} \left(\int_{-\sqrt{1-z^2-y^2}}^{\sqrt{1-z^2-y^2}} 1 \, \mathrm{d}x \right) \mathrm{d}y \right] \mathrm{d}z.$$
(43)