
Fubini for continuous functions over intervals

We first prove the following theorem for continuous functions.

Theorem 1. Let f(x) be continuous on a compact interval I = [a, b]× [c, d]. Then

∫

[a,b]×[c,d]

f(x, y) d(x, y) =

∫

a

b
[

∫

c

d

f(x, y) dy

]

dx =

∫

c

d
[

∫

a

b

f(x, y) dx

]

dy. (1)

Proof. As f(x, y) is continuous, for every fixed x0 and fixed y0, f(x0, y) and f(x, y0) are continuous.
Furthermore,

∫

c

d

f(x, y) dy and

∫

a

b

f(x, y) dx (2)

are also continuous. Thus all the above integrals are well-defined.

We prove

∫

[a,b]×[c,d]

f(x, y) d(x, y)=

∫

a

b
[

∫

c

d

f(x, y) dy

]

dx (3)

and the other equality is similar. Wlog assume a = c = 0, b = d = 1.

Fix any ε > 0. Since f is continuous on [0, 1]× [0, 1] it is uniformly continuous and there is δ > 0 such that
for any ‖x− y‖< δ,

|f(x)− f(y)|< ε. (4)

Now take n ∈ N such that 1/n < δ/ 2
√

and divide [0, 1] × [0, 1] into squares of the form Iij 8 [i h,

(i+ 1)h)× [j h, (j + 1) h) for i, j ∈Z.

Then we have

∀i, j , sup
Iij

f − inf
Iij

f < ε. (5)

Now define

g(x, y)8 sup
Iij

f , h(x, y)8 inf
Iij

f , (x, y)∈ Iij. (6)

We have

∫

I

g(x, y) >

∫

I

f(x, y)>

∫

I

h(x, y),

∫

I

g(x, y)−
∫

I

h(x, y) <ε. (7)

Now it can be checked through direct calculation that

∫

I

g(x, y) =

∫

0

1
[
∫

0

1

g(x, y) dy

]

dx,

∫

I

h(x, y)=

∫

0

1
[
∫

0

1

h(x, y) dy

]

dx. (8)
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Fix x= x0. We have

g(x0, y) > f(x0, y) >h(x0, y) (9)

therefore

∫

0

1

g(x0, y) dy >

∫

0

1

f(x0, y) dy >

∫

0

1

h(x0, y) dy (10)

for every x0∈ [0, 1]. Consequently

∫

0

1
[
∫

0

1

g(x, y) dy

]

dx >

∫

0

1
[
∫

0

1

f(x, y) dy

]

dx >

∫

0

1
[
∫

0

1

h(x, y) dy

]

dx. (11)

This gives

∣

∣

∣

∣

∫

I

f(x, y)−
∫

0

1
[
∫

0

1

f(x, y) dy

]

dx

∣

∣

∣

∣

<ε (12)

and the conclusion follows from the arbitrariness of ε. �

Theorem 2. Let I ⊆R
N , J ⊆R

M be compact intervals and let f(x, y) be continuous on I × J. Then

∫

I×J

f(x, y) d(x, y)=

∫

I

[
∫

J

f(x, y) dy

]

dx=

∫

J

[
∫

I

f(x, y) dx

]

dy. (13)

Proof. The proof is similar and is left as exercise. �

Corollary 3. Let f(x) be continuous on I 8 [a1, b1]×� × [aN , bN]. Then we have

∫

I

f(x) dx =

∫

a1

b1
[

∫

a2

b2
[�(∫

aN

bN

f(x1,
 , xN) dxN

)� ]dx2

]

dx1 (14)

and the order of the integration can be arbitrarily changed.

Proof. Exercise. �

Example 4. Let A8 [0, 1]× [0, 1]. Calculate

∫

A

x exy dxdy. (15)

Solution. We write

∫

A

x exy dx dy =

∫

0

1
[
∫

0

1

x exy dy

]

dx

=

∫

0

1
[
∫

0

x

ez dz

]

dx
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=

∫

0

1

(ex − 1) dx

= e− 2. (16)

Exercise 1. Let f ∈C2. Let I = [a, b]× [c, d]. Calculate

∫

I

∂2f

∂x∂y
dxdy. (17)

Exercise 2. Calculate the followng.

∫

I

ex+y dx dy, I = [0, 1]2; (18)

∫

I

x2

1+ y2
dx dy, I = [0, 1]2; (19)

∫

I

x sin (x y) dxdy, I = [0, π/2]× [0, 1]. (20)

∫

I

sin (x + y) dx dy, I = [0, π/2]2; (21)

∫

I

|y − x2|
√

dxdy, I = [−1, 1]× [0, 2]; (22)

Exercise 3. Let I = [0, 1]2. Calculate
∫

I
f(x, y)dxdy for the following f(x, y):

f(x, y) =

{

1 y 6x2

0 y > x2
; (23)

f(x, y) =

{

1− x− y x + y 61
0 x + y > 1

; (24)

f(x, y) =

{

x + y x2 6 y 62 x2

0 elsewhere.
. (25)

Problem 1. (USTC2) Construct B ⊆R2 such that the following are satisfied.

1. for every a∈R, B ∩{x = a} and B ∩{y = a} both consist of at most one single point.

2. B̄ =R2.

Now define

f(x, y) =

{

1 (x, y)∈B

0 elsewhere
. (26)

Prove that

a) Both

∫

0

1
[
∫

0

1

f(x, y) dy

]

dx and

∫

0

1
[
∫

0

1

f(x, y) dx

]

dy (27)

exist and equal 0;

b) f is not integrable on [0, 1]2.
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Fubini: The general case (Optional)

Two-variable Fubini

We still start from the two-variable case.

Theorem 5. Let f(x, y):R2� R be integrable on I 8 [a, b]× [c, d]. Further assume that for every x∈ [a, b],
f(x, y) as a function of y is Riemann integrable on [c, d]. Then the function

F (x)8 ∫

c

d

f(x, y) dy (28)

is Riemann integrable on [a, b] and furthermore

∫

I

f(x, y) d(x, y)=

∫

a

b

F (x) dx=

∫

a

b
[

∫

c

d

f(x, y) dy

]

dx. (29)

If furthermore for every y ∈ [c, d], f(x, y) as a function of x is Riemann integrable on [a, b], then we can
switch the order of integration:

∫

a

b
[

∫

c

d

f(x, y) dy

]

dx =

∫

c

d
[

∫

a

b

f(x, y) dx

]

dy =

∫

I

f(x, y) d(x, y). (30)

This theorem follows immediately from the following result which reveals what is really going on here.

Theorem 6. Let f(x, y):R2� R and I 8 [a, b]× [c, d]. Define two functions Φ(x) and φ(x) as follows:

Φ(x)8 U(f(x, ·), [c, d]), φ(x)8 L(f(x, ·), [c, d]). (31)

Here U(f(x, ·, [c,d])) and L(f(x, ·), [c, d]) denote the upper and lower integrals for the function f(x, y) treated
as a function of y alone (with x fixed). Then

U(Φ(x), [a, b]) 6 U(f(x, y), I); (32)

L(φ(x), [a, b]) > L(f(x, y), I). (33)

Exercise 4. Prove Theorem 5 using Theorem 6.

Remark 7. From this theorem we see that two dimensional Riemann integrability puts strong restriction
on the behavior of the function along every slice.

Exercise 5. Let f(x, y):R2�R be integrable on I 8 [a, b]× [c, d]. For any ε > 0, Let Sε8 {x∈ [a, b]P f(x, y) as a function

of y is not Riemann integrable on [c, d] and U(f , [c, d])−L(f , [c, d])> ε}. Then µ1(Sε)=0 where µ1 is the one-dimensional

Jordan measure. In other words, if f(x, y) is integrable on I, then most of its “slices” are Riemann integrable.

Remark 8. Note that in the above exercise we cannot replace Sε by S 8 {x ∈ [a, b] P f(x, y) as a function
of y is not Riemann integrable on [c, d]}. See the problem below.
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Problem 2. Let

f(x, y)8 





























0 x∈Q, y ∈Q
1

p
x=

r

p
, (p, r) co-prime; y ∈Qc

1
q

x∈Qc, y =
s

q
, (s, q) co-prime

0 x∈Qc, y ∈Qc

. (34)

Prove that f(x, y) is Riemann integrable on [0,1]× [0, 1]. But for every x∈ [0,1]∩Q, f(x, y) is not Riemann integrable on

[0, 1].

Proof. (of Theorem 6) Recall our results regarding “uniform partition”. For any n∈N, set h18 b − a

n
and

h28 d − c

n
. Let Iij,h8 [a +(i− 1)h1, a + i h1]× [c + (j − 1)h2, c + j h2]. Then we know that

lim
n→∞

∑

i,j=1

n

fij h1 h2 = lim
n→∞

∑

i,j=1

n

Fij h1 h2 =

∫

I

f(x, y) d(x, y) (35)

where

fij 8 inf
(x,y)∈Iij,h

f(x, y), Fij 8 sup
(x,y)∈Iij,h

f(x, y). (36)

Now for each (i, j), we have

∀(x, y)∈ Iij,h, fij 6 f(x, y)� fij h2 6 L(f(x, y), [c +(j − 1)h2, c + j h2]); (37)

Since this is true for all x∈ [a + (i− 1)h1, a + i h1], we have

fij h1 h2 6 L(L(f(x, y), [c + (j − 1)h2, c + j h2]), [a + (i− 1)h1, a + i h1]). (38)

Now summing over i, j we have
∑

i,j=1

n

fij h1 h2 6L(φ(x), [a, b]). (39)

The other inequality can be proved similarly. �

Exercise 6. Let f :R� R, a < b < c. Prove that

L(f , [a, b])+ L(f , [b, c]) =L(f , [a, c]). (40)

General cases

The proof for the general case is similar.

Theorem 9. (Fubini) Let f(x, y) (x∈R
M , y ∈R

N) be integrable on I 8 I1× I2 where I1⊆R
M , I2⊆R

N.
Assume that for every x∈ I1 the function f(x, y) as a function of y only is integrable on I2, then

∫

I

f(x, y) d(x, y)=

∫

I1

[
∫

I2

f(x, y) dy

]

dx. (41)

If furthermore for every y ∈ I2 the function f(x, y) as a function of x only is integrable on I1, then

∫

I1

[
∫

I2

f(x, y) dy

]

dx =

∫

I2

[
∫

I1

f(x, y) dx

]

dy =

∫

I

f(x, y) d(x, y). (42)

Exercise 7. Let A: ={(x, y, z)P x2 + y2 + z2 61}. Prove that

µ(A) =

∫

−1

1
[

∫

− 1−z2
√

1−z2

√ (

∫

− 1−z2
−y2

√

1−z2
−y2

√

1 dx

)

dy

]

dz. (43)
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