Further study of Riemann integrability

Uniform partition

In some situations it is beneficial to restrict ourselves to a special class of simple functions.

Definition 1. (Uniform partition) A uniform partition of size $h>0$, denoted P_{h}, is the collection of the following compact intervals:

$$
\begin{equation*}
P_{h}:=\left\{\left[i_{1} h,\left(i_{1}+1\right) h\right] \times \cdots \times\left[i_{N} h,\left(i_{N}+1\right) h\right] \mid\left(i_{1}, \ldots, i_{N}\right) \in \mathbb{Z}^{N}\right\} . \tag{1}
\end{equation*}
$$

Theorem 2. Let $A \subseteq \mathbb{R}^{N}$ be Jordan measurable. For every $h>0$ denote by $n_{1}(h)$ the number of intervals in P_{h} contained in A^{o}, and $n_{2}(h)$ the number of intervals in P_{h} with non-empty intersection with A. Then

$$
\begin{equation*}
\mu(A)=\inf _{h>0}\left[n_{2}(h) h^{N}\right]=\sup _{h>0}\left[n_{1}(h) h^{N}\right]=\lim _{h \rightarrow 0}\left[n_{2}(h) h^{N}\right]=\lim _{h \rightarrow 0}\left[n_{1}(h) h^{N}\right] . \tag{2}
\end{equation*}
$$

Proof. Take any $\varepsilon>0$. Since A is Jordan measurable, there are simple graphs B, C such that

$$
\begin{equation*}
B \subseteq A^{o}, \bar{A} \subseteq C, \quad \mu(A)-\frac{\varepsilon}{2} \leqslant \mu(B) \leqslant \mu(A) \leqslant \mu(C) \leqslant \mu(A)+\frac{\varepsilon}{2} \tag{3}
\end{equation*}
$$

Now consider $B_{h}:=\cup_{I \in P_{h}, I \subseteq B} I$. Let $m_{1}(h)$ denote the number of intervals in B_{h}. Then clearly $m_{1}(h) \leqslant n_{1}(h)$. Furthermore we have

$$
\begin{equation*}
m_{1}(h) h^{N}=\mu\left(B_{h}\right) \geqslant \mu(B)-h L \tag{4}
\end{equation*}
$$

where L is the total length of the boundary of B (note that as B is a simple graph we do not need any calculus to define L). Taking $h<\frac{\varepsilon}{2 L}$ we see that

$$
\begin{equation*}
\mu(A) \geqslant n_{1}(h) h^{N} \geqslant m_{1}(h) h^{N} \geqslant \mu(A)-\varepsilon . \tag{5}
\end{equation*}
$$

Similarly we have, when $h<h_{0}$ for some h_{0} determined by ε,

$$
\begin{equation*}
\mu(A) \leqslant n_{2}(h) h^{N} \leqslant \mu(A)+\varepsilon \tag{6}
\end{equation*}
$$

Thus by definition (2) is true.

Theorem 3. Let f be a simple function and let A be Jordan measurable. Let

$$
\begin{align*}
& W_{h, \text { in }}:=\left\{g \leqslant f \mid g \text { is constant on } I^{o} \text { for every } I \in P_{h}\right\} \tag{7}\\
& W_{h, \text { out }}:=\left\{h \geqslant f \mid h \text { is constant on } I^{o} \text { for every } I \in P_{h}\right\} . \tag{8}
\end{align*}
$$

Then

$$
\begin{equation*}
\int_{A} f(x) \mathrm{d} x=\lim _{h \longrightarrow 0}\left[\sup _{g \in W_{h, \text { in }}} \int_{A} g(x) \mathrm{d} x\right]=\lim _{h \rightarrow 0}\left[\inf _{h \in W_{h, \text { in }}} \int_{A} h(x) \mathrm{d} x\right] \tag{9}
\end{equation*}
$$

Proof. Since f is an integrable simple function, $f^{+}:=\max \{f, 0\}$ and $f^{-}:=\min \{f, 0\}$ are both integrable simple functions. Therefore we only need to prove the above for non-negative simple functions. By definition of simple functions

$$
\begin{equation*}
f^{+}=\sum_{i=1}^{n} c_{i} 1_{A_{i}}(x) \tag{10}
\end{equation*}
$$

where $c_{i} \geqslant 0$. So it suffices to prove the theorem for $1_{A_{i}}(x)$, which is done in Theorem 2.

Riemann integrability using uniform partition

Theorem 4. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. Define

$$
\begin{align*}
& W_{h, \text { in }}(f):=\left\{g \leqslant f \mid g \text { is constant on } I^{o} \text { for every } I \in P_{h}\right\} \tag{11}\\
& W_{h, \text { out }}(f):=\left\{h \geqslant f \mid h \text { is constant on } I^{o} \text { for every } I \in P_{h}\right\} \tag{12}
\end{align*}
$$

Then f is integrable if and only if

$$
\begin{equation*}
\lim _{h \longrightarrow 0}\left[\sup _{g \in W_{h, \text { in }}} \int_{A} g(x) \mathrm{d} x\right]=\lim _{h \rightarrow 0}\left[\inf _{h \in W_{h, \text { in }}} \int_{A} h(x) \mathrm{d} x\right] \tag{13}
\end{equation*}
$$

and in this case the common value is $\int_{A} f(x) \mathrm{d} x$.
Proof. First clearly all functions in $W_{h, \text { in }}(f)$ and $W_{h, \text { out }}(f)$ are simple functions. Therefore the equality of the two limits indicates the integrability of f by definition.

On the other hand, if f is integrable, then for any $\varepsilon>0$ there are simple functions g, h such that

$$
\begin{equation*}
g \leqslant f \leqslant h, \quad \int_{A} f(x) \mathrm{d} x-\frac{\varepsilon}{2} \leqslant \int_{A} g(x) \mathrm{d} x \leqslant \int_{A} f(x) \mathrm{d} x \leqslant \int_{A} h(x) \mathrm{d} x \leqslant \int_{A} f(x) \mathrm{d} x+\frac{\varepsilon}{2} . \tag{14}
\end{equation*}
$$

By Theorem 3 there is $h_{0}>0$ such that for all $0<h<h_{0}$,

$$
\begin{equation*}
\int_{A} f(x) \mathrm{d} x-\varepsilon \leqslant \int_{A} g(x) \mathrm{d} x-\frac{\varepsilon}{2} \leqslant \sup _{u \in W_{h, \text { in }}(g)} \int_{A} u(x) \mathrm{d} x \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{v \in W_{h, \text { out }}(h)} \int_{A} v(x) \mathrm{d} x \leqslant \int_{A} h(x) \mathrm{d} x+\frac{\varepsilon}{2} \leqslant \int_{A} f(x) \mathrm{d} x+\varepsilon \tag{16}
\end{equation*}
$$

Now note that

$$
\begin{equation*}
W_{h, \mathrm{in}}(g) \subseteq W_{h, \mathrm{in}}(f) \Longrightarrow \sup _{u \in W_{h, \text { in }(g)}} \int_{A} u(x) \mathrm{d} x \leqslant \sup _{u \in W_{h, \text { in }(f)}} \int_{A} u(x) \mathrm{d} x \tag{17}
\end{equation*}
$$

similarly

$$
\begin{equation*}
\inf _{v \in W_{h, \text { out }}(h)} \int_{A} v(x) \mathrm{d} x \geqslant \inf _{v \in W_{h, \text { out }}(f)} \int_{A} v(x) \mathrm{d} x . \tag{18}
\end{equation*}
$$

On the other hand we have

$$
\begin{equation*}
\sup _{u \in W_{h, \text { in }}(f)} \int_{A} u(x) \mathrm{d} x \leqslant \int_{A} f(x) \mathrm{d} x \leqslant \inf _{v \in W_{h, \text { out }}(f)} \int_{A} v(x) \mathrm{d} x \tag{19}
\end{equation*}
$$

Putting the above together we have for all $0<h<h_{0}(\varepsilon)$,

$$
\begin{equation*}
\int_{A} f(x) \mathrm{d} x-\varepsilon \leqslant \sup _{u \in W_{h, \text { in }}(f)} \int_{A} u(x) \mathrm{d} x \leqslant \int_{A} f(x) \mathrm{d} x \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{A} f(x) \mathrm{d} x \leqslant \inf _{v \in W_{h, \text { out }}(f)} \int_{A} v(x) \mathrm{d} x \leqslant \int_{A} f(x) \mathrm{d} x+\varepsilon \tag{21}
\end{equation*}
$$

By defintition this means both limits

$$
\begin{equation*}
\lim _{h \longrightarrow 0}\left[\sup _{g \in W_{h, \text { in }}} \int_{A} g(x) \mathrm{d} x\right], \quad \lim _{h \rightarrow 0}\left[\inf _{h \in W_{h, \text { in }}} \int_{A} h(x) \mathrm{d} x\right] \tag{22}
\end{equation*}
$$

exist and both equal $\int_{A} f(x) \mathrm{d} x$.
Exercise 1. Fill in the details of the above proof.

Regular domain

In practice it is often advantageous to make the integratiom domain E "regular", such as interval or ball. The following theorem discusses this possibility.

Theorem 5. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}, E_{1} \subseteq E_{2} \subseteq \mathbb{R}^{N}$. If
i. E_{1} is Jordan measurable;
ii. f is Riemann integrable on E_{1}.

Then the following function:

$$
\tilde{f}(\boldsymbol{x}):= \begin{cases}f(\boldsymbol{x}) & \boldsymbol{x} \in E_{1} \tag{23}\\ 0 & \boldsymbol{x} \notin E_{1}\end{cases}
$$

is Riemann integrable on E_{2} with

$$
\begin{equation*}
\int_{E_{2}} \tilde{f}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{E_{1}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{24}
\end{equation*}
$$

Proof. Take any $\varepsilon>0$. Since f is integrable on E_{1} there are simple functions $g \geqslant f \geqslant h$ such that

$$
\begin{equation*}
\int_{E_{1}} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\int_{E_{1}} h(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}<\varepsilon \tag{25}
\end{equation*}
$$

Now we define

$$
\tilde{g}(\boldsymbol{x}):=\left\{\begin{array}{ll}
g(\boldsymbol{x}) & \boldsymbol{x} \in E_{1} \tag{26}\\
0 & \boldsymbol{x} \notin E_{1}
\end{array}, \quad \tilde{h}(\boldsymbol{x}):= \begin{cases}h(\boldsymbol{x}) & \boldsymbol{x} \in E_{1} \\
0 & \boldsymbol{x} \notin E_{1}\end{cases}\right.
$$

Clearly \tilde{g}, \tilde{h} are still simple functions and furthermore satisfy $\tilde{g} \geqslant \tilde{f} \geqslant \tilde{h}$. But

Consequently

$$
\begin{equation*}
\int_{E_{2}} \tilde{g}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{E_{1}} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}, \quad \int_{E_{2}} \tilde{h}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{E_{1}} h(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\int_{E_{1}} \tilde{g}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\int_{E_{1}} \tilde{h}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}<\varepsilon \tag{28}
\end{equation*}
$$

This gives the integrability of \tilde{f} on E_{2} as well as (24).
Exercise 2. If \tilde{f} is integrable on E_{2}, can we conclude f is integrable on E_{1} ?
Remark 6. Thanks to the above theorem, when calculating higher dimensional integrals, we can always take the domain to be a compact interval.

