
Further study of Riemann integrability

Uniform partition

In some situations it is beneficial to restrict ourselves to a special class of simple functions.

Definition 1. (Uniform partition) A uniform partition of size h > 0, denoted Ph, is the collection of the

following compact intervals:

Ph8 {[i1 h, (i1 + 1)h]×� × [iN h, (iN + 1) h]P (i1,
 , iN)∈Z
N}. (1)

Theorem 2. Let A ⊆R
N be Jordan measurable. For every h > 0 denote by n1(h) the number of intervals

in Ph contained in Ao, and n2(h) the number of intervals in Ph with non-empty intersection with A. Then

µ(A)= inf
h>0

[n2(h)hN] = sup
h>0

[n1(h) hN] = lim
h→0

[n2(h)hN] = lim
h→0

[n1(h)hN]. (2)

Proof. Take any ε > 0. Since A is Jordan measurable, there are simple graphs B, C such that

B ⊆Ao, Ā ⊆C, µ(A)−
ε

2
6 µ(B)6 µ(A) 6 µ(C) 6 µ(A)+

ε

2
. (3)

Now consider Bh8 ∪I∈Ph,I⊆BI. Let m1(h) denote the number of intervals in Bh. Then clearly m1(h)6n1(h).
Furthermore we have

m1(h)hN = µ(Bh)> µ(B)− h L (4)

where L is the total length of the boundary of B (note that as B is a simple graph we do not need any

calculus to define L). Taking h <
ε

2 L
we see that

µ(A)> n1(h)hN > m1(h) hN > µ(A)− ε. (5)

Similarly we have, when h < h0 for some h0 determined by ε,

µ(A) 6n2(h)hN 6 µ(A)+ ε. (6)

Thus by definition (2) is true. �

Theorem 3. Let f be a simple function and let A be Jordan measurable. Let

Wh,in8 {g 6 f P g is constant on Io for every I ∈Ph}; (7)

Wh,out8 {h > f P h is constant on Io for every I ∈Ph}. (8)

Then

∫

A

f(x) dx= lim
h� 0

[

sup
g∈Wh,in

∫

A

g(x) dx

]

= lim
h→0

[

inf
h∈Wh,in

∫

A

h(x) dx

]

. (9)
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Proof. Since f is an integrable simple function, f+8 max {f , 0} and f−8 min {f , 0} are both integrable
simple functions. Therefore we only need to prove the above for non-negative simple functions. By definition
of simple functions

f+ =
∑

i=1

n

ci 1Ai
(x) (10)

where ci > 0. So it suffices to prove the theorem for 1Ai
(x), which is done in Theorem 2. �

Riemann integrability using uniform partition

Theorem 4. Let f :RN� R. Define

Wh,in(f)8 {g 6 f P g is constant on Io for every I ∈Ph}; (11)

Wh,out(f)8 {h > f P h is constant on Io for every I ∈Ph}. (12)

Then f is integrable if and only if

lim
h� 0

[

sup
g∈Wh,in

∫

A

g(x) dx

]

= lim
h→0

[

inf
h∈Wh,in

∫

A

h(x) dx

]

(13)

and in this case the common value is
∫

A
f(x) dx.

Proof. First clearly all functions in Wh,in(f) and Wh,out(f) are simple functions. Therefore the equality of
the two limits indicates the integrability of f by definition.

On the other hand, if f is integrable, then for any ε > 0 there are simple functions g, h such that

g 6 f 6 h,

∫

A

f(x) dx−
ε

2
6

∫

A

g(x) dx 6

∫

A

f(x) dx 6

∫

A

h(x) dx 6

∫

A

f(x) dx+
ε

2
. (14)

By Theorem 3 there is h0 > 0 such that for all 0 < h < h0,

∫

A

f(x) dx− ε 6

∫

A

g(x) dx−
ε

2
6 sup

u∈Wh,in(g)

∫

A

u(x) dx (15)

and

inf
v∈Wh,out(h)

∫

A

v(x) dx 6

∫

A

h(x) dx +
ε

2
6

∫

A

f(x) dx + ε. (16)

Now note that

Wh,in(g)⊆Wh,in(f)� sup
u∈Wh,in(g)

∫

A

u(x) dx 6 sup
u∈Wh,in(f)

∫

A

u(x) dx (17)

similarly

inf
v∈Wh,out(h)

∫

A

v(x) dx > inf
v∈Wh,out(f)

∫

A

v(x) dx. (18)

On the other hand we have

sup
u∈Wh,in(f)

∫

A

u(x) dx6

∫

A

f(x) dx 6 inf
v∈Wh,out(f)

∫

A

v(x) dx. (19)
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Putting the above together we have for all 0 < h < h0(ε),

∫

A

f(x) dx− ε6 sup
u∈Wh,in(f)

∫

A

u(x) dx 6

∫

A

f(x) dx (20)

and
∫

A

f(x) dx 6 inf
v∈Wh,out(f)

∫

A

v(x) dx 6

∫

A

f(x) dx + ε. (21)

By defintition this means both limits

lim
h� 0

[

sup
g∈Wh,in

∫

A

g(x) dx

]

, lim
h→0

[

inf
h∈Wh,in

∫

A

h(x) dx

]

(22)

exist and both equal
∫

A
f(x) dx. �

Exercise 1. Fill in the details of the above proof.

Regular domain

In practice it is often advantageous to make the integratiom domain E “regular”, such as interval or ball.
The following theorem discusses this possibility.

Theorem 5. Let f :RN� R, E1⊆E2⊆R
N. If

i. E1 is Jordan measurable;

ii. f is Riemann integrable on E1.

Then the following function:

f̃ (x)8 {

f(x) x∈E1

0 x � E1
(23)

is Riemann integrable on E2 with
∫

E2

f̃ (x) dx =

∫

E1

f(x) dx. (24)

Proof. Take any ε > 0. Since f is integrable on E1 there are simple functions g > f > h such that

∫

E1

g(x) dx−

∫

E1

h(x) dx < ε. (25)

Now we define

g̃(x)8 {

g(x) x∈E1

0 x � E1
, h̃(x)8 {

h(x) x∈E1

0 x � E1
(26)

Clearly g̃ , h̃ are still simple functions and furthermore satisfy g̃ > f̃ > h̃. But

∫

E2

g̃(x) dx =

∫

E1

g(x) dx,

∫

E2

h̃(x) dx =

∫

E1

h(x) dx. (27)

Consequently
∫

E1

g̃(x) dx−

∫

E1

h̃(x) dx <ε. (28)

This gives the integrability of f̃ on E2 as well as (24). �

Exercise 2. If f̃ is integrable on E2, can we conclude f is integrable on E1?

Remark 6. Thanks to the above theorem, when calculating higher dimensional integrals, we can always
take the domain to be a compact interval.
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