Further study of Riemann integrability

Uniform partition

In some situations it is beneficial to restrict ourselves to a special class of simple functions.

Definition 1. (Uniform partition) A uniform partition of size h > 0, denoted P_h , is the collection of the following compact intervals:

$$P_h := \{ [i_1 h, (i_1 + 1) h] \times \dots \times [i_N h, (i_N + 1) h] | (i_1, \dots, i_N) \in \mathbb{Z}^N \}.$$
(1)

Theorem 2. Let $A \subseteq \mathbb{R}^N$ be Jordan measurable. For every h > 0 denote by $n_1(h)$ the number of intervals in P_h contained in A^o , and $n_2(h)$ the number of intervals in P_h with non-empty intersection with A. Then

$$\mu(A) = \inf_{h>0} \left[n_2(h) \, h^N \right] = \sup_{h>0} \left[n_1(h) \, h^N \right] = \lim_{h\to 0} \left[n_2(h) \, h^N \right] = \lim_{h\to 0} \left[n_1(h) \, h^N \right]. \tag{2}$$

Proof. Take any $\varepsilon > 0$. Since A is Jordan measurable, there are simple graphs B, C such that

$$B \subseteq A^{o}, \bar{A} \subseteq C, \qquad \mu(A) - \frac{\varepsilon}{2} \leqslant \mu(B) \leqslant \mu(A) \leqslant \mu(C) \leqslant \mu(A) + \frac{\varepsilon}{2}.$$
(3)

Now consider $B_h := \bigcup_{I \in P_h, I \subseteq B} I$. Let $m_1(h)$ denote the number of intervals in B_h . Then clearly $m_1(h) \leq n_1(h)$. Furthermore we have

$$m_1(h) h^N = \mu(B_h) \geqslant \mu(B) - h L \tag{4}$$

where L is the total length of the boundary of B (note that as B is a simple graph we do not need any calculus to define L). Taking $h < \frac{\varepsilon}{2L}$ we see that

$$\mu(A) \ge n_1(h) h^N \ge m_1(h) h^N \ge \mu(A) - \varepsilon.$$
(5)

Similarly we have, when $h < h_0$ for some h_0 determined by ε ,

$$\mu(A) \leqslant n_2(h) h^N \leqslant \mu(A) + \varepsilon. \tag{6}$$

Thus by definition (2) is true.

Theorem 3. Let f be a simple function and let A be Jordan measurable. Let

 $W_{h,\text{in}} := \{ g \leqslant f \mid g \text{ is constant on } I^o \text{ for every } I \in P_h \};$ (7)

$$W_{h,\text{out}} := \{h \ge f \mid h \text{ is constant on } I^o \text{ for every } I \in P_h\}.$$
(8)

Then

$$\int_{A} f(x) \, \mathrm{d}x = \lim_{h \to 0} \left[\sup_{g \in W_{h,\mathrm{in}}} \int_{A} g(x) \, \mathrm{d}x \right] = \lim_{h \to 0} \left[\inf_{h \in W_{h,\mathrm{in}}} \int_{A} h(x) \, \mathrm{d}x \right]. \tag{9}$$

Proof. Since f is an integrable simple function, $f^+ := \max \{f, 0\}$ and $f^- := \min \{f, 0\}$ are both integrable simple functions. Therefore we only need to prove the above for non-negative simple functions. By definition of simple functions

$$f^{+} = \sum_{i=1}^{n} c_{i} \mathbf{1}_{A_{i}}(x) \tag{10}$$

where $c_i \ge 0$. So it suffices to prove the theorem for $1_{A_i}(x)$, which is done in Theorem 2.

Riemann integrability using uniform partition

Theorem 4. Let $f: \mathbb{R}^N \mapsto \mathbb{R}$. Define

$$W_{h,\text{in}}(f) := \{ g \leqslant f \mid g \text{ is constant on } I^o \text{ for every } I \in P_h \};$$
(11)

$$W_{h,\text{out}}(f) := \{h \ge f \mid h \text{ is constant on } I^o \text{ for every } I \in P_h\}.$$
(12)

Then f is integrable if and only if

$$\lim_{h \to 0} \left[\sup_{g \in W_{h, \text{in}}} \int_{A} g(x) \, \mathrm{d}x \right] = \lim_{h \to 0} \left[\inf_{h \in W_{h, \text{in}}} \int_{A} h(x) \, \mathrm{d}x \right]$$
(13)

and in this case the common value is $\int_A f(x) dx$.

Proof. First clearly all functions in $W_{h,in}(f)$ and $W_{h,out}(f)$ are simple functions. Therefore the equality of the two limits indicates the integrability of f by definition.

On the other hand, if f is integrable, then for any $\varepsilon > 0$ there are simple functions g, h such that

$$g \leqslant f \leqslant h, \qquad \int_{A} f(x) \, \mathrm{d}x - \frac{\varepsilon}{2} \leqslant \int_{A} g(x) \, \mathrm{d}x \leqslant \int_{A} f(x) \, \mathrm{d}x \leqslant \int_{A} h(x) \, \mathrm{d}x \leqslant \int_{A} f(x) \, \mathrm{d}x + \frac{\varepsilon}{2}. \tag{14}$$

By Theorem 3 there is $h_0 > 0$ such that for all $0 < h < h_0$,

$$\int_{A} f(x) \, \mathrm{d}x - \varepsilon \leqslant \int_{A} g(x) \, \mathrm{d}x - \frac{\varepsilon}{2} \leqslant \sup_{u \in W_{h, \mathrm{in}}(g)} \int_{A} u(x) \, \mathrm{d}x \tag{15}$$

and

$$\inf_{v \in W_{h,\text{out}}(h)} \int_{A} v(x) \, \mathrm{d}x \leqslant \int_{A} h(x) \, \mathrm{d}x + \frac{\varepsilon}{2} \leqslant \int_{A} f(x) \, \mathrm{d}x + \varepsilon.$$
(16)

Now note that

$$W_{h,\mathrm{in}}(g) \subseteq W_{h,\mathrm{in}}(f) \Longrightarrow \sup_{u \in W_{h,\mathrm{in}}(g)} \int_{A} u(x) \,\mathrm{d}x \leqslant \sup_{u \in W_{h,\mathrm{in}}(f)} \int_{A} u(x) \,\mathrm{d}x \tag{17}$$

similarly

$$\inf_{v \in W_{h,\text{out}}(h)} \int_{A} v(x) \, \mathrm{d}x \ge \inf_{v \in W_{h,\text{out}}(f)} \int_{A} v(x) \, \mathrm{d}x.$$
(18)

On the other hand we have

$$\sup_{u \in W_{h, \text{in}}(f)} \int_{A} u(x) \, \mathrm{d}x \leqslant \int_{A} f(x) \, \mathrm{d}x \leqslant \inf_{v \in W_{h, \text{out}}(f)} \int_{A} v(x) \, \mathrm{d}x.$$
(19)

Putting the above together we have for all $0 < h < h_0(\varepsilon)$,

$$\int_{A} f(x) \, \mathrm{d}x - \varepsilon \leqslant \sup_{u \in W_{h, \mathrm{in}}(f)} \int_{A} u(x) \, \mathrm{d}x \leqslant \int_{A} f(x) \, \mathrm{d}x \tag{20}$$

and

$$\int_{A} f(x) \, \mathrm{d}x \leqslant \inf_{v \in W_{h,\mathrm{out}}(f)} \int_{A} v(x) \, \mathrm{d}x \leqslant \int_{A} f(x) \, \mathrm{d}x + \varepsilon.$$
(21)

By definition this means both limits

$$\lim_{h \to 0} \left[\sup_{g \in W_{h, \text{in}}} \int_{A} g(x) \, \mathrm{d}x \right], \qquad \lim_{h \to 0} \left[\inf_{h \in W_{h, \text{in}}} \int_{A} h(x) \, \mathrm{d}x \right]$$
(22)

exist and both equal $\int_A f(x) \, dx$.

Exercise 1. Fill in the details of the above proof.

Regular domain

In practice it is often advantageous to make the integration domain E "regular", such as interval or ball. The following theorem discusses this possibility.

Theorem 5. Let $f: \mathbb{R}^N \mapsto \mathbb{R}, E_1 \subseteq E_2 \subseteq \mathbb{R}^N$. If

- i. E_1 is Jordan measurable;
- ii. f is Riemann integrable on E_1 .

Then the following function:

$$\tilde{f}(\boldsymbol{x}) := \begin{cases} f(\boldsymbol{x}) & \boldsymbol{x} \in E_1 \\ 0 & \boldsymbol{x} \notin E_1 \end{cases}$$
(23)

is Riemann integrable on E_2 with

$$\int_{E_2} \tilde{f}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{E_1} f(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$
(24)

Proof. Take any $\varepsilon > 0$. Since f is integrable on E_1 there are simple functions $g \ge f \ge h$ such that

$$\int_{E_1} g(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} - \int_{E_1} h(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} < \varepsilon.$$
(25)

Now we define

$$\tilde{g}(\boldsymbol{x}) := \begin{cases} g(\boldsymbol{x}) & \boldsymbol{x} \in E_1 \\ 0 & \boldsymbol{x} \notin E_1 \end{cases}, \qquad \tilde{h}(\boldsymbol{x}) := \begin{cases} h(\boldsymbol{x}) & \boldsymbol{x} \in E_1 \\ 0 & \boldsymbol{x} \notin E_1 \end{cases}$$
(26)

Clearly \tilde{g}, \tilde{h} are still simple functions and furthermore satisfy $\tilde{g} \ge \tilde{f} \ge \tilde{h}$. But

$$\int_{E_2} \tilde{g}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{E_1} g(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}, \qquad \int_{E_2} \tilde{h}(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x} = \int_{E_1} h(\boldsymbol{x}) \, \mathrm{d}\boldsymbol{x}.$$
(27)

Consequently

$$\int_{E_1} \tilde{g}(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{x} - \int_{E_1} \tilde{h}(\boldsymbol{x}) \,\mathrm{d}\boldsymbol{x} < \varepsilon.$$
(28)

This gives the integrability of \tilde{f} on E_2 as well as (24).

Exercise 2. If \tilde{f} is integrable on E_2 , can we conclude f is integrable on E_1 ?

Remark 6. Thanks to the above theorem, when calculating higher dimensional integrals, we can always take the domain to be a compact interval.