Further study of Riemann integrability

Uniform partition

In some situations it is beneficial to restrict ourselves to a special class of simple functions.

Definition 1. (Uniform partition) A uniform partition of size h >0, denoted Py, is the collection of the
following compact intervals:

Py:={[i1h, (i1 + 1) h] x - x [ixh, (ixy + 1) ]| (i1, ...,in) € ZN}. (1)

Theorem 2. Let A CRY be Jordan measurable. For every h >0 denote by ni(h) the number of intervals
in Py, contained in A°, and na(h) the number of intervals in Pj, with non-empty intersection with A. Then

p(A) = it () W] = sup s () W] = i () )= Jim [ma () 1] )

Proof. Take any € >0. Since A is Jordan measurable, there are simple graphs B, C such that
BCA°,ACC,  p(A)—Z<u(B)<p(A) < u(C) < p(A) + <. (3)

Now consider Bp,:=Urep, 1cpl. Let my(h) denote the number of intervals in By,. Then clearly mq(h) <ni(h).
Furthermore we have

ma(h) hN = u(By) > p(B) — h L (4)

where L is the total length of the boundary of B (note that as B is a simple graph we do not need any
calculus to define L). Taking h < % we see that

p(A) = ni(h) WY Zma(h) hY > p(A) —e. (5)
Similarly we have, when h < hg for some hy determined by ¢,
(A) <na(h) BN < (A) + . (6)
Thus by definition (2) is true. O
Theorem 3. Let f be a simple function and let A be Jordan measurable. Let
Wh.in:={9 < f| g is constant on I° for every I € P, }; (7)

Wh.out :={h = f| h is constant on I° for every I € Pp}. (8)

Then

Af(:z:) dx—hlinolgesv%EYinA g(x) dx] _%g{he%ﬁ,,mﬁ h(x) dx} 9)



Proof. Since f is an integrable simple function, f™:=max{f,0} and f~:=min{f,0} are both integrable
simple functions. Therefore we only need to prove the above for non-negative simple functions. By definition
of simple functions

=Y ala) (10)

where ¢; > 0. So it suffices to prove the theorem for 14,(z), which is done in Theorem 2. O
Riemann integrability using uniform partition
Theorem 4. Let f: RN —R. Define
Wh.in(f):={g< f| g is constant on I° for every I € Pp}; (11)
Wh.owt(f):={h>= f| h is constant on I° for every I € Py }. (12)

Then f is integrable if and only if

li 3 dz | =1 inf h(z)d 13
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and in this case the common value is [ , f(x)dz.

Proof. First clearly all functions in W}, in(f) and W, ou(f) are simple functions. Therefore the equality of
the two limits indicates the integrability of f by definition.

On the other hand, if f is integrable, then for any € > 0 there are simple functions g, h such that

g<F<h, /Af(x)dx—%gAg(x)dmAf(x)dm/Ah(x)dxgéf(x)dﬂ% (14)

By Theorem 3 there is hg > 0 such that for all 0 < h < hy,

fl@)de—e< | g(x) dx—%< sup u(z)dz (15)
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inf v(z)dr < h(x dx—i——g/ r)dr +«. 16
sowitt [ @< [ ndrs< [ p@) (16)
Now note that

Whin(9) SWh.in(f)=  sup / u(z)de < sup / u(z) dx (17)
wEWh in(g) JA weWn in(f) JA
similarly
inf / v(z)de>  inf / v(x) da. (18)
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On the other hand we have

sup wz)de< | f(z)de<  inf v(z)dz. (19)
A A A
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Putting the above together we have for all 0 < h < hy(e),

/ fx)dz—e<  sup / u(x) dacg/ f(z)dx (20)
A wEWi in(f) /A A
and

/Af(x)dx< inf /Av(x)dxg/A flz)dz +e. (21)

vEWHL out(f)

By defintition this means both limits

I dz |, lm| inf [ h(@)d 22
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exist and both equal [, f(z)dz. O

Exercise 1. Fill in the details of the above proof.

Regular domain

In practice it is often advantageous to make the integratiom domain E “regular”, such as interval or ball.
The following theorem discusses this possibility.

Theorem 5. Let f:RYN —R, E;CE,CRYN. If
i. B1 1s Jordan measurable;
1. [ is Riemann integrable on Ej.

Then the following function:

ion. | f(x) zeFE
is Riemann integrable on Eo with
fl@)de= [ f(z)d. (24)
E2 El

Proof. Take any € >0. Since f is integrable on F; there are simple functions g > f > h such that

/ g(m)dm—/ h(z)de <e. (25)
B Ey
Now we define
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Clearly g, h are still simple functions and furthermore satisfy g > f >h. But

/E2 g(m)dm_[El g(x) da, /E2 i{(a:)da;_/E1 h(z) d. (27)

/El gN(w)d:IJ—/E1 h(z)de <e. (28)

Consequently

This gives the integrability of f on Ey as well as (24). O
Exercise 2. If f is integrable on F2, can we conclude f is integrable on E17

Remark 6. Thanks to the above theorem, when calculating higher dimensional integrals, we can always
take the domain to be a compact interval.



