Riemann Integrability

Lemma 1. Let E_{1}, E_{2} be Jordan measurable with $E_{1} \subseteq E_{2}$. Then if f is integrable on E_{2} it is also integrable on E_{1}.

Proof. Since f is integrable on E_{2} there are simple functions $g_{n} \geqslant f$ and $h_{n} \leqslant f$ such that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \int_{E_{2}}\left[g_{n}(x)-h_{n}(x)\right] \mathrm{d} x=0 \tag{1}
\end{equation*}
$$

Now we have

$$
\begin{align*}
0 \leqslant \int_{E_{1}}\left[g_{n}(x)-h_{n}(x)\right] \mathrm{d} x & =\int_{E_{2}}\left[g_{n}(x)-h_{n}(x)\right] \mathrm{d} x-\int_{E_{2}-E_{1}}\left[g_{n}(x)-h_{n}(x)\right] \mathrm{d} x \\
& \leqslant \int_{E_{2}}\left[g_{n}(x)-h_{n}(x)\right] \mathrm{d} x \tag{2}
\end{align*}
$$

Application of Squeeze Theorem gives

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \int_{E_{2}}\left[g_{n}(x)-h_{n}(x)\right] \mathrm{d} x=0 \tag{3}
\end{equation*}
$$

and integrability follows.

Theorem 2. Let A be Jordan measurable and $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be continuous on \bar{A}. Then f is integrable on A.

Proof. Since A is Jordan measurable it must be bounded and consequently \bar{A} is bounded and closed. By Heine-Borel \bar{A} is compact. As a consequence f is uniformly continuous on \bar{A}.
Take any $\varepsilon>0$. Then there is $\delta>0$ such that whenever $x, y \in \bar{A}$ with $\|x-y\|<\delta$, there holds

$$
\begin{equation*}
|f(x)-f(y)|<\frac{\varepsilon}{\mu(A)} \tag{4}
\end{equation*}
$$

Now set $h:=\delta / \sqrt{2}$ and consider the intersection of A with intervals of the form

$$
\begin{equation*}
I:=\left[i_{1} h,\left(i_{1}+1\right) h\right) \times \cdots \times\left[i_{N} h,\left(i_{N}+1\right) h\right) \tag{5}
\end{equation*}
$$

where $i_{1}, \ldots, i_{N} \in \mathbb{Z}$. Then we see that A can be written as a union

$$
\begin{equation*}
A=\cup_{i=1}^{m} A_{i} \tag{6}
\end{equation*}
$$

where each A_{i} is a subset of an interval of the above form, and furthermore $A_{i} \cap A_{j}=\varnothing$ when $i \neq j$. Now define

$$
\begin{equation*}
g(x)=\sup _{x \in A_{i}} f(x), \quad x \in A_{i} ; \quad h(x)=\inf _{x \in A_{i}} f(x), \quad x \in A_{i} \tag{7}
\end{equation*}
$$

Clearly $g \geqslant f \geqslant h$ and g, h are simple functions. Furthermore we have

$$
\begin{equation*}
\forall x, y \in A_{i}, \quad\|x-y\|<\delta \tag{8}
\end{equation*}
$$

so

$$
\begin{equation*}
g(x)-h(x)<\frac{\varepsilon}{\mu(A)} \tag{9}
\end{equation*}
$$

This gives

$$
\begin{equation*}
\int_{A}[g(x)-h(x)] \mathrm{d} x<\varepsilon \tag{10}
\end{equation*}
$$

and integrability follows.

Theorem 3. Let $A \subseteq \mathbb{R}^{N}$ be Jordan measurable and $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be bounded. Denote

$$
\begin{equation*}
S:=\left\{x \in \mathbb{R}^{N} \mid f(x) \text { is not continuous at } x\right\} \tag{11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\mu(S \cap A)=0 \Longrightarrow f(x) \text { is integrable on } A \tag{12}
\end{equation*}
$$

Proof. Since $f(x)$ is bounded, assume $|f(x)| \leqslant M \in \mathbb{R}$. Furthermore as A is Jordan measurable, $\mu(\partial A)=0$. Let $T:=(S \cap A) \cup \partial A$. We have $\mu(T)=0$.
For any $\varepsilon>0$, since $\mu(T)=0$, there is a simple graph $E \subseteq \mathbb{R}^{N}$ such that

$$
\begin{equation*}
\bar{T} \subseteq E \text { and } \mu(E)<\frac{\varepsilon}{4 M} \tag{13}
\end{equation*}
$$

Enlarging E a little bit we can further require

$$
\begin{equation*}
\bar{T} \subseteq E^{o} \tag{14}
\end{equation*}
$$

Now clearly f is continuous on $\Omega:=\bar{A}-E^{o}=A-E^{o}$ and therefore is integrable on $A-E$. Thus there are simple functions g, h such that $g \geqslant f \geqslant h$ on $A-E$ and

$$
\begin{equation*}
\int_{A-E}[g(x)-h(x)] \mathrm{d} x<\frac{\varepsilon}{2} \tag{15}
\end{equation*}
$$

Now define

$$
u(x):=\left\{\begin{array}{ll}
g(x) & x \in A-E \tag{16}\\
M & x \in E
\end{array}, \quad v(x):= \begin{cases}h(x) & x \in A-E \\
-M & x \in E\end{cases}\right.
$$

We have $u \geqslant f \geqslant v$ on A and furthermore

$$
\begin{equation*}
\int_{A}[u(x)-v(x)] \mathrm{d} x<\varepsilon . \tag{17}
\end{equation*}
$$

Therefore f is integrable on A.
Example 4. The Riemann function

$$
f(x):= \begin{cases}1 / q & x=p / q \text { with } p, q \text { co-prime } \tag{18}\\ 0 & x \in[0,1]-\mathbb{Q}\end{cases}
$$

is Riemann integrable but its discontinuity does not have zero Jordan measure.
Theorem 5. Let $A \subseteq \mathbb{R}^{N}$ be Jordan measurable and $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be bounded. Let

$$
\begin{equation*}
S:=\left\{x \in \mathbb{R}^{N} \mid f(x) \text { is not continuous at } x\right\} \tag{19}
\end{equation*}
$$

Then

$$
\begin{equation*}
S=\cup_{n=1}^{\infty} S_{n} \tag{20}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n}:=\left\{x \in \mathbb{R}^{N} \left\lvert\, \operatorname{osc}(f, x)>\frac{1}{n}\right.\right\} . \tag{21}
\end{equation*}
$$

Here the oscillation of f is defined as

$$
\begin{equation*}
\operatorname{osc}(f, x):=\lim _{r \backslash 0}\left[\sup _{y \in B(x, r)} f(y)-\inf _{y \in B(x, r)} f(y)\right] . \tag{22}
\end{equation*}
$$

Then f is Riemann integrable if $\mu\left(S_{n}\right)=0$ for every $n \in \mathbb{N}$.

Proof. Left as exercise.

Remark 6. The above theorem reveals one problem with our Jordan-Darboux-Riemann integration theory. Also note that the theorem is not "if and only if". It turns out that f is Riemann integrable if the Lebesgue measure of the set of its discontinuities is zero.

Question 7. Compare the above with the following theorem by Lebesgue: f is Riemann integrable if and only if the set of its discontinuous points has Lebesgue measure 0.

Exercise 1. Let $A \subseteq \mathbb{R}^{N}$ be Jordan measurable. Let $f, g: \mathbb{R}^{N} \mapsto \mathbb{R}$ be integrable on A and such that

$$
\begin{equation*}
\mu\left(A \cap\left\{x \in \mathbb{R}^{N} \mid f(x) \neq g(x)\right\}\right)=0 . \tag{23}
\end{equation*}
$$

Prove that

$$
\begin{equation*}
\int_{A} f(x) \mathrm{d} x=\int_{A} g(x) \mathrm{d} x \tag{24}
\end{equation*}
$$

Exercise 2. (USTC2) Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be integrable on an interval I with $\int_{I} f(x) \mathrm{d} x>0$. Prove that there is an interval $J \subseteq I$ such that $f>0$ on J.

Exercise 3. Is the following function integrable on $[0,1] \times[0,1]$?

$$
f(x, y):= \begin{cases}\sin \left(\frac{1}{x y}\right) & x y \neq 0 \tag{25}\\ 0 & x y=0\end{cases}
$$

Exercise 4. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be integrable on a measurable set A. Then so does $|f|$. Does the converse hold? Justify.
Exercise 5. Let A be Jordan measurable and $f_{n}: \mathbb{R}^{N} \mapsto \mathbb{R}$ be continuous on A. Further assume that for every $x \in A, f_{n}(x)$ is decreasing and $\lim _{n \rightarrow \infty} f_{n}(x)=0$. Prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{A} f_{n}(x) \mathrm{d} x=0 \tag{26}
\end{equation*}
$$

Can we drop continuity or decreasing? Justify your answers.

