
Definition of Riemann Integration

Definition 1. Let f :RN� R. Let E ⊆R
N be bounded. Denote

Wupper(f)8 {g > f , g is a simple function}; Wlower(f): ={h6 f , h is a simple function}. (1)

Then define the upper and lower integrals of f on E as:

U(f , E)8 inf
g∈Wupper

∫

E

g(x) dx; L(f , E)8 sup
h∈Wlower

∫

E

h(x) dx. (2)

We say f(x) is Riemann integrable on the set E if and only if U(f , E) = L(f , E) is finite. We denote this

common value by
∫

E

f(x) dx. (3)

Exercise 1. Let f :RN� R. Let E ⊆R
N be bounded. Then U(f , E) >L(f , E).

Theorem 2. Let f :RN� R be Riemann integrable on E, then it is bounded on E. That is there is M > 0
such that ∀x∈E, |f(x)|6 M.

Proof. Assume the contrary. Then either f is not bounded above or not bounded below. Wlog assume f

is not bounded above.

Take any g ∈Wupper(f). g is a simple function so

g(x)=
∑

i=1

n

ci 1Ai
(x). (4)

It is clear that

g(x)6
∑

i=1

n

|ci|<∞ (5)

is bounded above. So Wupper(f) is empty and U(f , E) is not finite. �

Theorem 3. Let f :RN� R be bounded. Let E ⊆R
N be such that µ(E)=0. Then f is integrable on E with

∫

E
f(x) dx= 0.

Proof. As f is bounded, there is M > 0 such that |f(x)|6 M , that is −M 6 f(x) 6 M . Now take simple
functions

g(x)= M, h(x)=−M. (6)

It is clear that g ∈Wupper(f) and h∈Wlower(f). Furthermore we have

∫

E

g(x) dx=

∫

E

h(x) dx = 0. (7)

Therefore

06 L(f , E) 6U(f , E)6 0. (8)
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Consequently U(f , E)= L(f , E)= 0. �

Theorem 4. Let E ⊆RN. Let f :RN�R. Then f is integrable on E if and only if there are simple functions

gn > f and hn 6 f such that

lim
n�∞

∫

E

(gn − hn) dx = 0. (9)

Proof.

• If. We have
∫

E

(gn(x)− hn(x)) dx> U(f , E)−L(f , E) (10)

and the conclusion follows.

• Only if. By definitions of sup and inf , for every n∈N there are gn > f and hn 6 f , simple functions,
such that

∫

E

gn(x) dx 6U(f , E)+
1

n
,

∫

E

hn(x) dx > L(f , E)−
1

n
. (11)

As f is integrable

U(f , E)= L(f , E), (12)

we have

06

∫

E

(gn − hn) dx6
2

n
. (13)

Application of the Squeeze Theorem gives the desired result. �

The above theorem can be written in a slightly different way.

Theorem 5. Let E ⊆R
N. Let f :RN� R. Then f is integrable on E if and only if for every ε> 0 there are

simple functions g > f > h such that

∫

E

[g(x)− h(x)] dx <ε. (14)

Example 6. Prove that f(x, y)= sin (x + y) is integrable on [0, 1]× [0, 1].

Proof. For any n∈N, set

gn(x, y)8









max
i

n
6x6

i+1

n
,

j

n
6y6

j+1

n

sin (x+ y)
i

n
< x <

i + 1

n
,
j

n
< y <

j +1

n

1 elsewhere

, i, j ∈{0,
 , n− 1} (15)

hn(x, y)8









min
i

n
6x6

i+1

n
,

j

n
6y6

j+1

n

sin (x+ y)
i

n
<x <

i+ 1

n
,
j

n
< y <

j +1

n

−1 elsewhere

, i, j ∈{0,
 , n− 1} (16)
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Then hn, gn are simple functions and hn 6 f 6 gn.

Now for any (x1, y1), (x2, y2)∈
[

i

n
,

i +1

n

]

×
[

j

n
,

j + 1

n

]

, we have

|sin (x1 + y1)− sin (x2 + y2)|= |cos (ξ)| |(x1 + y1)− (x2 + y2)|6
2

n
. (17)

Therefore for all (x, y)∈
(

i

n
,

i +1

n

)

×
(

j

n
,

j +1

n

)

,

gn(x, y)−hn(x, y)6
2

n
. (18)

Consequently
∫

E

(gn − hn) dx 6
∑

i=1,j=1

n
2

n
·

1

n2
=

2

n
� 0 (19)

Integrability now follows. �

Exercise 2. Prove that sin (x + y) is integrable on Ω8 {(x, y)P x2 + y2 61}.

Exercise 3. Consider calculating
∫

Ω
sin (x + y) d(x, y) as follows: For any h > 0, define

I(h): =
∑

i,j∈Z; (ih,jh)∈Ω

sin (i h + j h) h2. (20)

For what h can we be sure that
∣

∣

∣

∣

I(h)−

∫

Ω
sin (x + y) d(x, y)

∣

∣

∣

∣

< 10−3? (21)

Exercise 4. Let I 8 [a, b] × [c, d]. Let f(x): [a, b]� R, g(x): [c, d]� R . Let F (x, y) 8 f(x) g(y). Prove that F (x, y) is

integrable on I if and only if f , g are integrable on [a, b], [c, d] respectively. Furthermore we have

∫

I

F (x, y) d(x, y)=

[

∫

a

b

f(x) dx

][

∫

c

d

g(x) dx

]

. (22)

Similar to simple functions, we have the following properties.

Theorem 7. Let E ⊆R
N. Let f , g be Riemann integrable on E. Then

a) For every c∈R, c f is Riemann integrable on E, and

∫

E

c f(x) dx = c

∫

A

f(x) dx. (23)

b) f ± g is Riemann integrable on E, with

∫

E

(f ± g)(x) dx =

∫

E

f(x) dx±

∫

E

g(x) dx. (24)

c) If f > g for all x∈E, then
∫

E

f(x) dx >

∫

E

g(x) dx. (25)

Proof. We prove b) and leave a),c) for exercises.
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As f , g are integrable on A, we can find simple functions un > f > vn, wn > g > hn, such that

lim
n→∞

∫

A

(un(x)− vn(x)) dx= 0, lim
n�∞

∫

A

(wn(x)− hn(x)) dx =0. (26)

Now clearly

un + wn > f + g > vn +hn (27)

and
∫

A

[(un + wn)− (vn + hn)] dx=

∫

A

(un − vn) dx +

∫

A

(wn− hn) dx (28)

and the conclusion follows. �

Theorem 8. Let f be integrable on E1 and also on E2. Then f is integrable on E1 ∩E2, E1∪E2, E1−E2.

Furthermore
∫

E1∪E2

f(x) dx =

∫

E1

f(x) dx +

∫

E2

f(x) dx−

∫

E1∩E2

f(x) dx. (29)

In particular when µ(E1∩E2)= 0 we have

∫

E1∪E2

f(x) dx =

∫

E1

f(x) dx +

∫

E2

f(x) dx. (30)

Proof. Left as exercises. �

Theorem 9. (MVT) Let f , g be integrable on E. Denote

M8 sup
x∈E

f(x), m8 inf
x∈E

f(x). (31)

Assume g > 0. Then there is c∈ [m, M ] such that

∫

E

f(x) g(x) dx = c

∫

E

g(x) dx. (32)

Proof. Exercise. �

Remark 10. If we further assume f is continuous on Ē and Ē is connected (doesn’t need to be path
connected), we can take c = f(ξ) for some ξ ∈ Ē .
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