Definition of Riemann Integration

Definition 1. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. Let $E \subseteq \mathbb{R}^{N}$ be bounded. Denote

$$
\begin{equation*}
W_{\text {upper }}(f):=\{g \geqslant f, g \text { is a simple function }\} ; \quad W_{\text {lower }}(f):=\{h \leqslant f, h \text { is a simple function }\} . \tag{1}
\end{equation*}
$$

Then define the upper and lower integrals of f on E as:

$$
\begin{equation*}
U(f, E):=\inf _{g \in W_{\text {upper }}} \int_{E} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} ; \quad L(f, E):=\sup _{h \in W_{\text {lower }}} \int_{E} h(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} . \tag{2}
\end{equation*}
$$

We say $f(x)$ is Riemann integrable on the set E if and only if $U(f, E)=L(f, E)$ is finite. We denote this common value by

$$
\begin{equation*}
\int_{E} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{3}
\end{equation*}
$$

Exercise 1. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. Let $E \subseteq \mathbb{R}^{N}$ be bounded. Then $U(f, E) \geqslant L(f, E)$.

Theorem 2. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be Riemann integrable on E, then it is bounded on E. That is there is $M>0$ such that $\forall \boldsymbol{x} \in E,|f(\boldsymbol{x})| \leqslant M$.

Proof. Assume the contrary. Then either f is not bounded above or not bounded below. Wlog assume f is not bounded above.

Take any $g \in W_{\text {upper }}(f) . g$ is a simple function so

$$
\begin{equation*}
g(\boldsymbol{x})=\sum_{i=1}^{n} c_{i} 1_{A_{i}}(x) \tag{4}
\end{equation*}
$$

It is clear that

$$
\begin{equation*}
g(\boldsymbol{x}) \leqslant \sum_{i=1}^{n}\left|c_{i}\right|<\infty \tag{5}
\end{equation*}
$$

is bounded above. So $W_{\text {upper }}(f)$ is empty and $U(f, E)$ is not finite.

Theorem 3. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be bounded. Let $E \subseteq \mathbb{R}^{N}$ be such that $\mu(E)=0$. Then f is integrable on E with $\int_{E} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0$.

Proof. As f is bounded, there is $M>0$ such that $|f(\boldsymbol{x})| \leqslant M$, that is $-M \leqslant f(\boldsymbol{x}) \leqslant M$. Now take simple functions

$$
\begin{equation*}
g(\boldsymbol{x})=M, \quad h(\boldsymbol{x})=-M \tag{6}
\end{equation*}
$$

It is clear that $g \in W_{\text {upper }}(f)$ and $h \in W_{\text {lower }}(f)$. Furthermore we have

$$
\begin{equation*}
\int_{E} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{E} h(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=0 . \tag{7}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
0 \leqslant L(f, E) \leqslant U(f, E) \leqslant 0 \tag{8}
\end{equation*}
$$

Consequently $U(f, E)=L(f, E)=0$.

Theorem 4. Let $E \subseteq \mathbb{R}^{N}$. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. Then f is integrable on E if and only if there are simple functions $g_{n} \geqslant f$ and $h_{n} \leqslant f$ such that

$$
\begin{equation*}
\lim _{n \longrightarrow \infty} \int_{E}\left(g_{n}-h_{n}\right) \mathrm{d} \boldsymbol{x}=0 \tag{9}
\end{equation*}
$$

Proof.

- If. We have

$$
\begin{equation*}
\int_{E}\left(g_{n}(\boldsymbol{x})-h_{n}(\boldsymbol{x})\right) \mathrm{d} \boldsymbol{x} \geqslant U(f, E)-L(f, E) \tag{10}
\end{equation*}
$$

and the conclusion follows.

- Only if. By definitions of sup and inf, for every $n \in \mathbb{N}$ there are $g_{n} \geqslant f$ and $h_{n} \leqslant f$, simple functions, such that

$$
\begin{equation*}
\int_{E} g_{n}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \leqslant U(f, E)+\frac{1}{n}, \quad \int_{E} h_{n}(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \geqslant L(f, E)-\frac{1}{n} \tag{11}
\end{equation*}
$$

As f is integrable

$$
\begin{equation*}
U(f, E)=L(f, E) \tag{12}
\end{equation*}
$$

we have

$$
\begin{equation*}
0 \leqslant \int_{E}\left(g_{n}-h_{n}\right) \mathrm{d} \boldsymbol{x} \leqslant \frac{2}{n} \tag{13}
\end{equation*}
$$

Application of the Squeeze Theorem gives the desired result.

The above theorem can be written in a slightly different way.
Theorem 5. Let $E \subseteq \mathbb{R}^{N}$. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. Then f is integrable on E if and only if for every $\varepsilon>0$ there are simple functions $g \geqslant f \geqslant h$ such that

$$
\begin{equation*}
\int_{E}[g(\boldsymbol{x})-h(\boldsymbol{x})] \mathrm{d} \boldsymbol{x}<\varepsilon \tag{14}
\end{equation*}
$$

Example 6. Prove that $f(x, y)=\sin (x+y)$ is integrable on $[0,1] \times[0,1]$.

Proof. For any $n \in \mathbb{N}$, set

$$
\begin{align*}
& g_{n}(x, y):= \begin{cases}\max ^{\operatorname{i}} \leqslant x \leqslant \frac{i+1}{n}, \frac{j}{n} \leqslant y \leqslant \frac{j+1}{n} & \sin (x+y) \\
1 & \frac{i}{n}<x<\frac{i+1}{n}, \frac{j}{n}<y<\frac{j+1}{n}, i, j \in\{0, \ldots, n-1\} \\
\text { elsewhere }\end{cases} \tag{15}\\
& h_{n}(x, y):= \begin{cases}\min ^{\frac{i}{n} \leqslant x \leqslant \frac{i+1}{n}, \frac{j}{n} \leqslant y \leqslant \frac{j+1}{n}} \sin (x+y) & \frac{i}{n}<x<\frac{i+1}{n}, \frac{j}{n}<y<\frac{j+1}{n}, i, j \in\{0, \ldots, n-1\} \\
-1 & \text { elsewhere }\end{cases} \tag{16}
\end{align*}
$$

Then h_{n}, g_{n} are simple functions and $h_{n} \leqslant f \leqslant g_{n}$.
Now for any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in\left[\frac{i}{n}, \frac{i+1}{n}\right] \times\left[\frac{j}{n}, \frac{j+1}{n}\right]$, we have

$$
\begin{equation*}
\left|\sin \left(x_{1}+y_{1}\right)-\sin \left(x_{2}+y_{2}\right)\right|=|\cos (\xi)|\left|\left(x_{1}+y_{1}\right)-\left(x_{2}+y_{2}\right)\right| \leqslant \frac{2}{n} \tag{17}
\end{equation*}
$$

Therefore for all $(x, y) \in\left(\frac{i}{n}, \frac{i+1}{n}\right) \times\left(\frac{j}{n}, \frac{j+1}{n}\right)$,

$$
\begin{equation*}
g_{n}(x, y)-h_{n}(x, y) \leqslant \frac{2}{n} \tag{18}
\end{equation*}
$$

Consequently

$$
\begin{equation*}
\int_{E}\left(g_{n}-h_{n}\right) \mathrm{d} \boldsymbol{x} \leqslant \sum_{i=1, j=1}^{n} \frac{2}{n} \cdot \frac{1}{n^{2}}=\frac{2}{n} \longrightarrow 0 \tag{19}
\end{equation*}
$$

Integrability now follows.

Exercise 2. Prove that $\sin (x+y)$ is integrable on $\Omega:=\left\{(x, y) \mid x^{2}+y^{2} \leqslant 1\right\}$.
Exercise 3. Consider calculating $\int_{\Omega} \sin (x+y) \mathrm{d}(x, y)$ as follows: For any $h>0$, define

$$
\begin{equation*}
I(h):=\sum_{i, j \in \mathbb{Z} ;(i h, j h) \in \Omega} \sin (i h+j h) h^{2} . \tag{20}
\end{equation*}
$$

For what h can we be sure that

$$
\begin{equation*}
\left|I(h)-\int_{\Omega} \sin (x+y) \mathrm{d}(x, y)\right|<10^{-3} ? \tag{21}
\end{equation*}
$$

Exercise 4. Let $I:=[a, b] \times[c, d]$. Let $f(x):[a, b] \mapsto \mathbb{R}, g(x):[c, d] \mapsto \mathbb{R}$. Let $F(x, y):=f(x) g(y)$. Prove that $F(x, y)$ is integrable on I if and only if f, g are integrable on $[a, b],[c, d]$ respectively. Furthermore we have

$$
\begin{equation*}
\int_{I} F(x, y) \mathrm{d}(x, y)=\left[\int_{a}^{b} f(x) \mathrm{d} x\right]\left[\int_{c}^{d} g(x) \mathrm{d} x\right] \tag{22}
\end{equation*}
$$

Similar to simple functions, we have the following properties.

Theorem 7. Let $E \subseteq \mathbb{R}^{N}$. Let f, g be Riemann integrable on E. Then
a) For every $c \in \mathbb{R}$, $c f$ is Riemann integrable on E, and

$$
\begin{equation*}
\int_{E} c f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=c \int_{A} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{23}
\end{equation*}
$$

b) $f \pm g$ is Riemann integrable on E, with

$$
\begin{equation*}
\int_{E}(f \pm g)(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{E} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \pm \int_{E} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{24}
\end{equation*}
$$

c) If $f \geqslant g$ for all $x \in E$, then

$$
\begin{equation*}
\int_{E} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \geqslant \int_{E} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{25}
\end{equation*}
$$

Proof. We prove b) and leave a), c) for exercises.

As f, g are integrable on A, we can find simple functions $u_{n} \geqslant f \geqslant v_{n}, w_{n} \geqslant g \geqslant h_{n}$, such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{A}\left(u_{n}(x)-v_{n}(x)\right) \mathrm{d} x=0, \quad \lim _{n \longrightarrow \infty} \int_{A}\left(w_{n}(x)-h_{n}(x)\right) \mathrm{d} x=0 \tag{26}
\end{equation*}
$$

Now clearly

$$
\begin{equation*}
u_{n}+w_{n} \geqslant f+g \geqslant v_{n}+h_{n} \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{A}\left[\left(u_{n}+w_{n}\right)-\left(v_{n}+h_{n}\right)\right] \mathrm{d} x=\int_{A}\left(u_{n}-v_{n}\right) \mathrm{d} x+\int_{A}\left(w_{n}-h_{n}\right) \mathrm{d} x \tag{28}
\end{equation*}
$$

and the conclusion follows.

Theorem 8. Let f be integrable on E_{1} and also on E_{2}. Then f is integrable on $E_{1} \cap E_{2}, E_{1} \cup E_{2}, E_{1}-E_{2}$. Furthermore

$$
\begin{equation*}
\int_{E_{1} \cup E_{2}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{E_{1}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{E_{2}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\int_{E_{1} \cap E_{2}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{29}
\end{equation*}
$$

In particular when $\mu\left(E_{1} \cap E_{2}\right)=0$ we have

$$
\begin{equation*}
\int_{E_{1} \cup E_{2}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=\int_{E_{1}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}+\int_{E_{2}} f(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{30}
\end{equation*}
$$

Proof. Left as exercises.

Theorem 9. (MVT) Let f, g be integrable on E. Denote

$$
\begin{equation*}
M:=\sup _{\boldsymbol{x} \in E} f(\boldsymbol{x}), \quad m:=\inf _{\boldsymbol{x} \in E} f(\boldsymbol{x}) . \tag{31}
\end{equation*}
$$

Assume $g \geqslant 0$. Then there is $c \in[m, M]$ such that

$$
\begin{equation*}
\int_{E} f(\boldsymbol{x}) g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}=c \int_{E} g(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \tag{32}
\end{equation*}
$$

Proof. Exercise.

Remark 10. If we further assume f is continuous on \bar{E} and \bar{E} is connected (doesn't need to be path connected), we can take $c=f(\boldsymbol{\xi})$ for some $\boldsymbol{\xi} \in \bar{E}$.

