Jordan measurability

Finally we define Jordan measure for general sets through approximation using simple graphs.

Definition 1. (Jordan inner and outer measure) Let $A \subseteq \mathbb{R}^N$. Let

$$W_{\rm in} := \{ B \subseteq \mathbb{R}^N | B \text{ is a simple graph and } B \subseteq A \}; \tag{1}$$

$$W_{\text{out}} = \{ C \subseteq \mathbb{R}^N | C \text{ is a simple graph and } A \subseteq C \}.$$

$$\tag{2}$$

We define

• (Jordan inner measure)

$$\mu_{\rm in}(A) := \sup_{B \in W_{\rm in}} \mu(B); \tag{3}$$

• (Jordan outer measure)

$$\mu_{\text{out}}(A) := \inf_{C \in W_{\text{out}}} \mu(C).$$
(4)

Theorem 2. Let

$$W'_{\text{in}} := \{ B \subseteq \mathbb{R}^N | B \text{ is a simple graph and } B \subseteq A^o \};$$
(5)

$$W'_{\text{out}} = \{ C \subseteq \mathbb{R}^N | C \text{ is a simple graph and } \bar{A} \subseteq C \}.$$
(6)

Then

$$\mu_{\rm in}(A) = \sup_{B \in W_{\rm in}'} \mu(B), \qquad \mu_{\rm out}(A) = \inf_{C \in W_{\rm out}'} \mu(C). \tag{7}$$

Exercise 1. Prove the above theorem.

Definition 3. (Jordan measure) Let $A \subseteq \mathbb{R}^N$. It is Jordan measurable if and only if $\mu_{in}(A) = \mu_{out}(A)$. We denote this common value by $\mu(A)$.

Lemma 4. If $A \subseteq \mathbb{R}^N$ is Jordan measurable, then A is bounded.

Remark 5. Note that $\mu_{in}(A)$ and $\mu_{out}(A)$ is defined for all $A \subseteq \mathbb{R}^N$, even those that are not measurable.

The following lemmas are trivial to prove but very useful.

Lemma 6. Let $A \subseteq \mathbb{R}^N$. Then $\mu_{in}(A) \leq \mu_{out}(A)$.

Lemma 7. Let $A \subseteq \mathbb{R}^N$. Then

- A is measurable if for every $\varepsilon > 0$, there are simple graphs B, C such that $B \subseteq A^o \subseteq \overline{A} \subseteq C$ and $\mu(C) \mu(B) < \varepsilon$;
- A is not measurable if there is $\varepsilon_0 > 0$ such that for all simple graphs B, C satisfying $B \subseteq A^o \subseteq \overline{A} \subseteq C$, there holds $\mu(C) \mu(B) \ge \varepsilon_0$.

Exercise 2. Prove the above lemmas.

Example 8. Let I be a compact interval in \mathbb{R}^N . Let $A \subseteq \mathbb{R}^N$ be such that $I^o \subseteq A \subseteq I$. Then A is measurable and $\mu(A) = \mu(I)$. In particular $\mu(I^o) = \mu(I)$.

Proof. Since $A \subseteq I$ and I is closed, we have $\overline{A} \subseteq I$ and therefore $\mu_{out}(A) \leq \mu(I)$.

On the other hand, take any $a \in (0, 1)$ and any $x_0 \in I^o$, define

$$J := a \left(I - \boldsymbol{x}_0 \right) + \boldsymbol{x}_0, \tag{8}$$

we have $J \subseteq I^o \subseteq A^o$. Consequently $\mu_{in}(A) \ge \mu(J) = a^N \mu(I)$.

By the arbitrariness of a we have $\mu_{in}(A) \ge \mu_{out}(A)$ so they must be equal.

Exercise 3. Let $A \subseteq \mathbb{R}^N$ be such that there is a simple graph B such that $B^o \subseteq A \subseteq B$. Then A is measurable and $\mu(A) = \mu(B)$.

Example 9. Let $A = [0, 1] \cap \mathbb{Q}$. Is A Jordan measurable?

Solution. Since $\bar{A} = [0,1]$ we have $\mu_{out}(A) = 1$. On the other hand $A^o = \emptyset$ so $\mu_{in}(A) = 0$. Therefore A is not Jordan measurable.

Exercise 4. Let $A \subseteq \mathbb{R}^N$ be open. Is A always measurable?

Example 10. Let $A \subseteq [0, 1] \times [0, 1]$ be defined as follows:

$$(x, y) \in A \Longleftrightarrow [x \in \mathbb{Q}, y \in [0, 1]] \text{ or } [x \notin \mathbb{Q}, y \in [0, 1/2]].$$

$$(9)$$

Then $\overline{A} = [0, 1] \times [0, 1]$ but $A^o = (0, 1) \times (0, 1/2)$ so A is not Jordan measurable. On the other hand, notice that for each fixed $x_0, A \cap \{x = x_0\} \subseteq \mathbb{R}$ is Jordan measurable.

The following is a simple criterion checking Jordan measurability.

Theorem 11. A bounded set $A \subseteq \mathbb{R}^N$ is Jordan measurable if and only if $\mu(\partial A) = 0$.

Proof.

- If. Let $\varepsilon > 0$ be arbitrary, we prove $\mu_{out}(A) \leq \mu_{in}(A) + \varepsilon$. Together with $\mu_{out}(A) \geq \mu_{in}(A)$, we conclude $\mu_{in}(A) = \mu_{out}(A)$.
 - Case 1. $\mu_{in}(A) = 0$. In this case it must be that $A^o = \emptyset$ since otherwise there is $\boldsymbol{x} \in \mathbb{R}^N, r > 0$ such that $B(\boldsymbol{x}, r) \subseteq A$ and consequently

$$I := \left[\boldsymbol{x} - \frac{r}{2\sqrt{N}}, \boldsymbol{x} + \frac{r}{2\sqrt{N}} \right]^{N} \subseteq A$$
(10)

which means

$$\mu_{\rm in}(A) \ge \left(\frac{r}{\sqrt{N}}\right)^N > 0. \tag{11}$$

Since $A^o = \varnothing$ we have $A \subseteq \partial A$, and $\mu(\partial A) = 0 \Longrightarrow \mu(A) = 0$.

• Case 2. $\mu_{in}(A) > 0$. In this case let $J_1, ..., J_m$ be compact intervals covering ∂A and satisfying

$$\sum_{k=1}^{m} \mu(J_k) < \varepsilon.$$
(12)

By "expanding" J_k 's a bit we can assume $\partial A \subseteq \bigcup_{k=1}^m J_k^o$. Now for each $\boldsymbol{x} \in A^o$, there is an interval $I_{\boldsymbol{x}}$ such that

$$\boldsymbol{x} \in I_{\boldsymbol{x}} \subseteq A^o. \tag{13}$$

As a consequence

$$\bar{A} \subseteq (\bigcup_{\boldsymbol{x} \in A^o} I^o_{\boldsymbol{x}}) \cup (\bigcup_{k=1}^m J^o_m).$$
(14)

By Heine-Borel \overline{A} is compact. Therefore there are finitely many $x_1, ..., x_n \in A^o$ such that

$$\bar{A} \subseteq (\bigcup_{l=1}^{m} I_{\boldsymbol{x}_l}) \cup (\bigcup_{k=1}^{m} J_m).$$

$$(15)$$

Consequently

$$\mu_{\text{out}}(A) \leqslant \sum_{l=1}^{n} \mu(I_{\boldsymbol{x}_l}) + \sum_{k=1}^{m} \mu(J_m).$$
(16)

On the other hand, consider a "refinement" of $I_{\boldsymbol{x}_l}$ we see that

$$\mu_{\rm in}(A) \geqslant \sum_{l=1}^{n} \mu(I_{\boldsymbol{x}_l}) \tag{17}$$

and the proof ends.

• Only if.

Assume the contrary: There is $\varepsilon_0 > 0$ such that any $\{J_k\}_{k=1}^m$ covering ∂A , $\sum_{k=1}^m \mu(J_k) \ge \varepsilon_0$. Now take any $\{I_l\}, \{J_k\}$ such that $I_l^o \cap I_m^o = \emptyset$ and $\cup I_l \subseteq A^o$; $\cup J_k \supseteq \overline{A}$, then through refinement we can write

$$(\cup J_k) - (\cup I_l) \tag{18}$$

into a union of compact intervals. These intervals cover ∂A and consequently

$$\sum \mu(J_k) - \sum \mu(I_l) \ge \varepsilon_0 \Longrightarrow \mu_{\text{out}}(A) - \mu_{\text{in}}(A) \ge \varepsilon_0 > 0$$
(19)

and A cannot be Jordan measurable.

Exercise 5. Let $A \subseteq \mathbb{R}^N$ be measurable. Then so are A^o and \overline{A} and furthermore $\mu(A^o) = \mu(\overline{A}) = \mu(A)$.

Example 12. The unit ball $B := \{ \boldsymbol{x} \in \mathbb{R}^N | \| \boldsymbol{x} \| < 1 \}$ is Jordan measurable.

Solution. Clearly $\partial B = \{ \boldsymbol{x} \in \mathbb{R}^N | \| \boldsymbol{x} \| = 1 \}$ which can be written as

$$\partial B = \{ \boldsymbol{x} \in \mathbb{R}^N | f(\boldsymbol{x}) = 0 \}$$
(20)

with

$$f(\boldsymbol{x}) = \|\boldsymbol{x}\|^2 - 1. \tag{21}$$

Since grad $f = 2 \mathbf{x} \neq \mathbf{0}$ for every $\mathbf{x} \in \partial B$, $\mu(\partial B) = 0$.

Theorem 13. Let $A_1, ..., A_n$ be Jordan measurable. Then so are $\bigcup_{k=1}^n A_k$, $\bigcap_{k=1}^n A_k$ and $A_k - A_l$ for any k, l.

Exercise 6. Prove that $\mu(\bigcup_{k=1}^{n} A_k) \leq \sum_{k=1}^{n} \mu(A_k)$, and equality holds if for every $i \neq j$, $A_i^o \cap A_j^o = \emptyset$.

Problem 1. Let $A := \{(x, y) | x \in [a, b], y \in [0, f(x)]\}$ for some single variable function f(x). Then A is Jordan measurable if and only if f(x) is Riemann integrable. Furthermore $\mu(A) = \int_a^b f(x) dx$.

Problem 2. Let $A \subseteq \mathbb{R}^M$, $B \subseteq \mathbb{R}^N$ be both Jordan measurable. Then so is $A \times B := \{(\boldsymbol{x}, \boldsymbol{y}) \in \mathbb{R}^{M+N} | \boldsymbol{x} \in A, \boldsymbol{y} \in B\}$. Furthermore

$$\mu(A \times B) = \mu(A) \ \mu(B). \tag{22}$$

Problem 3. Let $E \subseteq \mathbb{R}^N$ be Jordan measurable. Let $l: \mathbb{R}^N \mapsto \mathbb{R}^N$ be a linear transform. Then l(E) is also Jordan measurable and

$$\mu(\boldsymbol{l}(E)) = |\det A| \ \mu(E) \tag{23}$$

where $A \in \mathbb{R}^{N \times N}$ is the matrix representation of l.

Problem 4. Let $A \subseteq \mathbb{R}^N$. Then A is Jordan measurable if and only if for every $B \subseteq \mathbb{R}^N$,

$$\mu_{\text{out}}(B \cap A) + \mu_{\text{out}}(B - A) = \mu_{\text{out}}(B).$$
(24)

Note that B may or may not be measurable.