
Measuring simple graphs

Simple graphs

We introduce that idea of simple graphs:

Definition 1. A⊆RN is a “simple graph” if there are compact intervals I1,	 , In such that A =∪k=1
n Ik.

Theorem 2. Let A,B be simple graphs. Let x0∈R
N, a∈R. Then so are a A, A+x0, A∩B,A∪B,A−Bo.

Proof. As A, B are simple graphs, there are compact intervals I1,	 , In and J1,	 , Jm such that

A=∪k=1
n Ik, B =∪l=1

m Jl. (1)

• a A. We have

a A =∪k=1
n (a Ik) (2)

and the conclusion follows from the fact that a Ik is also a compact interval.

• A + x0. We have

A+ x0 =∪k=1
n (Ik +x0) (3)

and the conclusion follows from the fact that Ik + x0 is also a compact interval.

• A∩B. We have

A∩B = [∪k=1
n Ik]∩ [∪l=1

m Jl] =∪k=1
n ∪l=1

m (Ik∩ Jl) (4)

Thus all we need to show is that Ik ∩ Jl is a compact interval.

Let Ik = {x ∈ R
N O x1 ∈ [a1, b1], x2 ∈ [a2, b2], 	 , xN ∈ [aN , bN]} and Jl = {x ∈ R

N O x1 ∈ [c1, d1], 	 ,

xN ∈ [cN , dN]}. Then we clearly have

Ik ∩ Jl = {x∈R
N O x1∈ [a1, b1]∩ [c1, d1],	 , xN ∈ [aN , bN]∩ [cN , dN]} (5)

which is still a compact interval.

• A∪B. We have

A∪B = [∪k=1
n Ik]∪ [∪l=1

m Jl] (6)

so it is a simple graph.

• A−Bo. Note that by our definition (Bo)c is not a simple graph so we cannot use A−Bo =A∩ (Bo)c.
Instead, as A, B are bounded, there is a compact interval I such that A∪B ⊆ I. Now all we need to
prove is that I −Bo is a simple graph. Without loss of generality, we assume I = [−R, R]N for some
R > 0.

Now assume B = ∪k=1
n In. Note that Bo � ∪k=1

n In
o. Now consider the end points in x1 direction for

each In, we have 2 n such points. Denote them by x1
1 6 x2

1 6	 6 x2n
1 ; Similarly we obtain x1

i ,	 , x2n
i

for every i = 2, 3,	 , N . Now let x0
i =−R, x2n+1

i = R. If we consider the following intervals

Ji1i2	 iN
7 [xi1, xi1+1]×
 × [xiN

, xiN+1] (7)
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for some i1,	 , iN ∈ {0, 2,	 , 2n}, then we see that

I −B =∪Ji1	 iN
(8)

where the union is taken over all Ji1
 iN
satisfying Ji1
 iN

o ∩B = ∅. Therefore I −B is a simple graph.
�

Remark 3. Note that in general rotating a simple graph does not give a simple graph anymore.

Exercise 1. Prove that if A∪B ⊆ I then A−B = A∩ (I −B).

Exercise 2. Explain why in general Bo� ∪k=1

n In
o.

Corollary 4. Let A1,	 , An be simple graphs. Then so are ∩k=1
n Ak and ∪k=1

n Ak.

Theorem 5. Let A be a simple graph. Then there are compact intervals I1,	 , In satisfying Ii
o∩ Ij

o = ∅ for

any i� j, such that

A =∪k=1
n Ik. (9)

Proof. The idea is similar to that in the proof for A−Bo in the last theorem. �

Measuring simple graphs

We will try to define a measure for all simple graphs. Thanks to Theorem 5 it suffices to define µ(I) for
every compact interval I.

Definition 6. (Measure for compact intervals) Let I = [a1, b1]×
 × [aN , bN] be a compact interval in

R
N. We define it’s Jordan measure to be

µ(I)7 (b1− a1)
 (bN − aN). (10)

Remark 7. This definition is more subtle than it looks. Explore to see whether this follows from i–v.

Definition 8. (Measure for simple graphs) Let A be a simple graph. Let I1,	 , In be compact intervals

satisfying Ii
o∩ Ij

o = ∅ for any i� j and A=∪k=1
n Ik. Define

µ(A) =
∑

k=1

n

µ(Ik). (11)

Theorem 9. (Consistency) The above definition is consistent, that is µ(A) is independent of the choice

of I1, 	 , In. In other words, if I1, 	 , In and J1, 	 , Jm satisfy Ii
o ∩ Ij

o = ∅, Jp
o ∩ Jq

o = ∅, and furthermore

A=∪k=1
n Ik =∪l=1

m Jl, then

∑

k=1

n

µ(Ik) =
∑

l=1

m

µ(Jl). (12)

Proof. Omitted. �
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Remark 10. Furthermore, note that here we are claiming that all simple graphs are measurable. To back
up this claim, we need to check the consistency of the definition with i – v.

Theorem 11. Let µ be defined for all simple graphs as in Definition 8. Then within the set of all simple

graphs, it satisfies i – v.

Proof.

i. Lineariy. Let A, B be simple graphs. Then there are compact intervals I1,	 , In, J1,	 , Jm such that
Ii

o∩ Ij
o = ∅, Jp

o∩ Jq
o = ∅, and furthermore A =∪k=1

n Ik, B =∪l=1
m Jl. Now we have

A∪B = (∪k=1
n Ik)∪ (∪l=1

m Jl). (13)

Thus all we need to show is Ik
o∩ Jl

o = ∅ which follows from A∩B = ∅.

ii. Monotonicity: Let A⊆B. Let C7 B −A. It is also a simple graph and satisfies C ∩A=∅. We have

µ(B)= µ(A)+ µ(C)> µ(A). (14)

iii. Translation and rotation invariance. Note that rotation invariance doesn’t apply here. The translation
part is left as exercise.

iv. Homogeneity. Exercise.

v. Normalized. Trivial. �

The following is a different way of defining the measure for simple graphs (in some sense this is “stability”
of the measure).

Theorem 12. Let A be a simple graph. Let Wout 7 {B ⊆ R
N O B is a simple graph and A ⊆ B},

Win7 {C ⊆R
N O C is a simple graph and C ⊆A}. Then

µ(A)= inf
B∈Wout

µ(B)= sup
C∈Win

µ(C). (15)

Proof. By monotonicity of µ, we have

∀B ∈Wout, µ(A)6 µ(B). (16)

On the other hand, A∈Wout. Therefore µ(A)= infB∈Wout
µ(B). Similarly we can prove the other equality. �

Theorem 13. Let A be a simple graph, define Win
′ 7 {C ⊆R

N O C is a simple graph and C ⊆Ao}. Then

µ(A)= sup
C∈Win

′

µ(C). (17)

Proof. Since A is a simple graph, there are compact intervals I1, 	 , In such that Ii
o ∩ Ij

o = ∅ and
µ(A)=

∑
k=1

n
µ(Ik). Take any xk ∈ Ik and any a∈ (0, 1). Define

Jk7 a (Ik −xk)+ xk. (18)
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Then Jk ⊆ Ik
o which implies

C 7 ∪k=1
n Jk ⊆Ao. (19)

As Ii
o∩ Ij

o = ∅, we have Ji
o∩Jj

o = ∅ and consequently

µ(C)=
∑

k=1

n

µ(Jk)= aN µ(A). (20)

Clearly C ∈Win so

sup
B∈Win

′

µ(B) > µ(C)= aN µ(A). (21)

By arbitrariness of a we have

sup
B∈Win

′

µ(B)> µ(A) (22)

On the other hand supB∈Win
µ(B)6 µ(A) so the conclusion follows. �

Exercise 3. Prove Jk ⊆ Ik
o and then C ⊆Ao.

Exercise 4. Prove that if for all a∈ (0, 1) we have supB∈Win
µ(B) >aN µ(A), then necessarily supB∈Win

µ(B) >µ(A).
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