Measuring simple graphs

Simple graphs

We introduce that idea of simple graphs:
Definition 1. A CRY is a “simple graph” if there are compact intervals I, ..., I, such that A=U}_ 1.
Theorem 2. Let A, B be simple graphs. Let zo€ R, a € R. Then so area A, A+xy, ANB,AUB,A— B°.

Proof. As A, B are simple graphs, there are compact intervals Iy, ..., I, and Ji,..., J,, such that
A=Ug_11x, B=UZJ,. (1)
e aA. We have
aA=U¢_1(al) (2)
and the conclusion follows from the fact that a I; is also a compact interval.
e A+ xy We have
A+ xo=Uj=1(Ik + o) (3)
and the conclusion follows from the fact that I + xg is also a compact interval.
e ANB. We have
ANB=[Uk=1 I N UL T = U —1UZ 1 (Ix N Jp) (4)

Thus all we need to show is that I N J; is a compact interval.

Let I, = {CE S ]RN| xr1 € [al, bl], To € [ag, bg], ., TN € [CLN, bN]} and J; = {CE S ]RN| xr1 € [01, dl], .
N € [en,dn]}. Then we clearly have

L0 Ji={x e R|z) € [a1,b1]N[ec1,du], ..., e € [an, by] N [en, dn]} (5)
which is still a compact interval.
e AUB. We have
AUB = [Up=11| U U2, J)] (6)
so it is a simple graph.

e A — B°. Note that by our definition (B?)€ is not a simple graph so we cannot use A — B°= AN (B°)°.
Instead, as A, B are bounded, there is a compact interval I such that AU B CI. Now all we need to

prove is that I — B is a simple graph. Without loss of generality, we assume I =[—R, R]"™ for some
R>0.

Now assume B = Ug_11,. Note that B° # Up_11;. Now consider the end points in z; direction for
each I,,, we have 2n such points. Denote them by 1 <3 < ... <z3,,; Similarly we obtain %, ..., 25,
for every i=2,3,..., N. Now let 2 =—R, 25,1 = R. If we consider the following intervals

Jiliz.--iN = [xila Ii1+1] Ko X [IiN’ IiNJrl] (7)



for some i1,...,ix €{0,2,...,2n}, then we see that
I—-B=UJ; ix (8)

where the union is taken over all J; satisfying J?, N B=@. Therefore I — B is a simple graph.
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Remark 3. Note that in general rotating a simple graph does not give a simple graph anymore.

Exercise 1. Prove that if AUBC1I then A— B=AN(I — B).

Exercise 2. Explain why in general B®#+ Up_11;.
Corollary 4. Let Ay, ..., A, be simple graphs. Then so are Ni—1Ar and Ug_1A.

Theorem 5. Let A be a simple graph. Then there are compact intervals I, ..., I, satisfying I7N 17 =@ for
any i+ j, such that

A=Ui-11. (9)
Proof. The idea is similar to that in the proof for A — B in the last theorem. O

Measuring simple graphs

We will try to define a measure for all simple graphs. Thanks to Theorem 5 it suffices to define u(I) for
every compact interval I.

Definition 6. (Measure for compact intervals) Let I =[a1,b1] X - X [an,bn] be a compact interval in
RYN. We define it’s Jordan measure to be

u(I):= (by— a1)-+(bny — an). (10)
Remark 7. This definition is more subtle than it looks. Explore to see whether this follows from i—v.

Definition 8. (Measure for simple graphs) Let A be a simple graph. Let Iy, ..., I, be compact intervals
satisfying I N1 =@ for any i# j and A=Ug_1Iy. Define

n(A) =5 u(L). (11)
k=1

Theorem 9. (Consistency) The above definition is consistent, that is u(A) is independent of the choice
of I, ..., In. In other words, if Iy, ..., I and Ji, ..., Jn, satisfy I? NI =@, JoN Jg =, and furthermore
A= U’Z‘lek = U;lel, then

n m

p(Ik) = p(). (12)

k=1 =1

Proof. Omitted. O



Remark 10. Furthermore, note that here we are claiming that all simple graphs are measurable. To back
up this claim, we need to check the consistency of the definition with i — v.

Theorem 11. Let p be defined for all simple graphs as in Definition 8. Then within the set of all simple
graphs, it satisfies i — v.

Proof.

i. Lineariy. Let A, B be simple graphs. Then there are compact intervals I, ..., I,,, Ji, ..., Jy, such that
nil}=2, JyNJ;=43, and furthermore A =Ug_1I;, B=U[Z{J;. Now we have

AU B = (Ug=11x) U (U2 1) (13)

Thus all we need to show is I N J =@ which follows from AN B=g.
ii. Monotonicity: Let A C B. Let C':= B — A. It is also a simple graph and satisfies C N A= . We have
u(B) = u(A) + p(C) > p(A), (14)

iii. Translation and rotation invariance. Note that rotation invariance doesn’t apply here. The translation
part is left as exercise.

iv. Homogeneity. Exercise.

v. Normalized. Trivial. [l

The following is a different way of defining the measure for simple graphs (in some sense this is “stability”
of the measure).

Theorem 12. Let A be a simple graph. Let Woy := {B C RY| B is a simple graph and A C B},
Win:={C QJRN\ C is a simple graph and C C A}. Then

p(A)=_inf p(B)= sup u(C). (15)
BeWout CEWin

Proof. By monotonicity of u, we have
VB e Wou‘m N(A) < N(B) (16)

On the other hand, A € W,,,;. Therefore pu(A) =infgew,, p(B). Similarly we can prove the other equality. O

Theorem 13. Let A be a simple graph, define Wi, :={C CRY|C is a simple graph and C C A°}. Then

n(A)= sup u(C). (17)
CeWwy,
Proof. Since A is a simple graph, there are compact intervals Iy, ..., I, such that I N I = & and

w(A)=>"7_, u(Ix). Take any @) € I}, and any a € (0,1). Define

Jii=a Iy — x) + x. (18)



Then Ji C I which implies
C.= Uzzle g A°.

As IPN 17 =, we have J7NJ7 =@ and consequently

n

p(C)=>" u(Jx) =a™ u(A).

k=1
Clearly C' € Wi, so
sup i(B) = p(C)=a™ u(A).
BeWwy,
By arbitrariness of a we have

sup fi(B) 2 u(A)
Bewy,

On the other hand suppew, 1(B) < p(A) so the conclusion follows.

Exercise 3. Prove Jj, C If and then C C A°.

(19)

Exercise 4. Prove that if for all a € (0,1) we have suppew,,u(B) = a’¥ u(A), then necessarily supp cw,, 1(B) > p(A).



