Measuring simple graphs

Simple graphs

We introduce that idea of simple graphs:

Definition 1. $A \subseteq \mathbb{R}^N$ is a "simple graph" if there are compact intervals $I_1, ..., I_n$ such that $A = \bigcup_{k=1}^n I_k$.

Theorem 2. Let A, B be simple graphs. Let $\mathbf{x}_0 \in \mathbb{R}^N$, $a \in \mathbb{R}$. Then so are $a, A + \mathbf{x}_0, A \cap B, A \cup B, A - B^o$.

Proof. As A, B are simple graphs, there are compact intervals $I_1, ..., I_n$ and $J_1, ..., J_m$ such that

$$A = \bigcup_{k=1}^{n} I_k, \qquad B = \bigcup_{l=1}^{m} J_l. \tag{1}$$

• a A. We have

$$a A = \bigcup_{k=1}^{n} (a I_k) \tag{2}$$

and the conclusion follows from the fact that $a I_k$ is also a compact interval.

• $A + \boldsymbol{x}_0$. We have

$$A + \boldsymbol{x}_0 = \bigcup_{k=1}^n (I_k + \boldsymbol{x}_0) \tag{3}$$

and the conclusion follows from the fact that $I_k + x_0$ is also a compact interval.

• $A \cap B$. We have

$$A \cap B = [\cup_{k=1}^{n} I_{k}] \cap [\cup_{l=1}^{m} J_{l}] = \cup_{k=1}^{n} \cup_{l=1}^{m} (I_{k} \cap J_{l})$$
(4)

Thus all we need to show is that $I_k \cap J_l$ is a compact interval.

Let $I_k = \{ \boldsymbol{x} \in \mathbb{R}^N | x_1 \in [a_1, b_1], x_2 \in [a_2, b_2], ..., x_N \in [a_N, b_N] \}$ and $J_l = \{ \boldsymbol{x} \in \mathbb{R}^N | x_1 \in [c_1, d_1], ..., x_N \in [c_N, d_N] \}$. Then we clearly have

$$I_k \cap J_l = \{ \boldsymbol{x} \in \mathbb{R}^N | x_1 \in [a_1, b_1] \cap [c_1, d_1], \dots, x_N \in [a_N, b_N] \cap [c_N, d_N] \}$$
(5)

which is still a compact interval.

• $A \cup B$. We have

$$A \cup B = \left[\bigcup_{k=1}^{n} I_k\right] \cup \left[\bigcup_{l=1}^{m} J_l\right] \tag{6}$$

so it is a simple graph.

• $A - B^o$. Note that by our definition $(B^o)^c$ is not a simple graph so we cannot use $A - B^o = A \cap (B^o)^c$. Instead, as A, B are bounded, there is a compact interval I such that $A \cup B \subseteq I$. Now all we need to prove is that $I - B^o$ is a simple graph. Without loss of generality, we assume $I = [-R, R]^N$ for some R > 0.

Now assume $B = \bigcup_{k=1}^{n} I_n$. Note that $B^o \neq \bigcup_{k=1}^{n} I_n^o$. Now consider the end points in x_1 direction for each I_n , we have 2n such points. Denote them by $x_1^1 \leq x_2^1 \leq \ldots \leq x_{2n}^1$; Similarly we obtain x_1^i, \ldots, x_{2n}^i for every $i = 2, 3, \ldots, N$. Now let $x_0^i = -R, x_{2n+1}^i = R$. If we consider the following intervals

$$J_{i_1 i_2 \dots i_N} := [x_{i_1}, x_{i_1+1}] \times \dots \times [x_{i_N}, x_{i_N+1}]$$
(7)

for some $i_1, \ldots, i_N \in \{0, 2, \ldots, 2n\}$, then we see that

$$I - B = \bigcup J_{i_1 \dots i_N} \tag{8}$$

where the union is taken over all $J_{i_1 \dots i_N}$ satisfying $J_{i_1 \dots i_N}^o \cap B = \emptyset$. Therefore I - B is a simple graph.

Remark 3. Note that in general rotating a simple graph does not give a simple graph anymore.

```
Exercise 1. Prove that if A \cup B \subseteq I then A - B = A \cap (I - B).
```

Exercise 2. Explain why in general $B^o \neq \bigcup_{k=1}^n I_n^o$.

Corollary 4. Let $A_1, ..., A_n$ be simple graphs. Then so are $\cap_{k=1}^n A_k$ and $\cup_{k=1}^n A_k$.

Theorem 5. Let A be a simple graph. Then there are compact intervals $I_1, ..., I_n$ satisfying $I_i^o \cap I_j^o = \emptyset$ for any $i \neq j$, such that

$$A = \bigcup_{k=1}^{n} I_k. \tag{9}$$

Proof. The idea is similar to that in the proof for $A - B^o$ in the last theorem.

Measuring simple graphs

We will try to define a measure for all simple graphs. Thanks to Theorem 5 it suffices to define $\mu(I)$ for every compact interval I.

Definition 6. (Measure for compact intervals) Let $I = [a_1, b_1] \times \cdots \times [a_N, b_N]$ be a compact interval in \mathbb{R}^N . We define it's Jordan measure to be

$$\mu(I) := (b_1 - a_1) \cdots (b_N - a_N). \tag{10}$$

Remark 7. This definition is more subtle than it looks. Explore to see whether this follows from i-v.

Definition 8. (Measure for simple graphs) Let A be a simple graph. Let $I_1, ..., I_n$ be compact intervals satisfying $I_i^o \cap I_j^o = \emptyset$ for any $i \neq j$ and $A = \bigcup_{k=1}^n I_k$. Define

$$\mu(A) = \sum_{k=1}^{n} \mu(I_k).$$
(11)

Theorem 9. (Consistency) The above definition is consistent, that is $\mu(A)$ is independent of the choice of $I_1, ..., I_n$. In other words, if $I_1, ..., I_n$ and $J_1, ..., J_m$ satisfy $I_i^o \cap I_j^o = \emptyset$, $J_p^o \cap J_q^o = \emptyset$, and furthermore $A = \bigcup_{k=1}^m I_k = \bigcup_{l=1}^m J_l$, then

$$\sum_{k=1}^{n} \mu(I_k) = \sum_{l=1}^{m} \mu(J_l).$$
(12)

Proof. Omitted.

Remark 10. Furthermore, note that here we are claiming that all simple graphs are measurable. To back up this claim, we need to check the consistency of the definition with i - v.

Theorem 11. Let μ be defined for all simple graphs as in Definition 8. Then within the set of all simple graphs, it satisfies i - v.

Proof.

i. Linearly. Let A, B be simple graphs. Then there are compact intervals $I_1, ..., I_n, J_1, ..., J_m$ such that $I_i^o \cap I_j^o = \emptyset, J_p^o \cap J_q^o = \emptyset$, and furthermore $A = \bigcup_{k=1}^n I_k, B = \bigcup_{l=1}^m J_l$. Now we have

$$A \cup B = (\cup_{k=1}^{n} I_k) \cup (\cup_{l=1}^{m} J_l).$$
(13)

Thus all we need to show is $I_k^o \cap J_l^o = \emptyset$ which follows from $A \cap B = \emptyset$.

ii. Monotonicity: Let $A \subseteq B$. Let C := B - A. It is also a simple graph and satisfies $C \cap A = \emptyset$. We have

$$\mu(B) = \mu(A) + \mu(C) \ge \mu(A). \tag{14}$$

- iii. Translation and rotation invariance. Note that rotation invariance doesn't apply here. The translation part is left as exercise.
- iv. Homogeneity. Exercise.
- v. Normalized. Trivial.

The following is a different way of defining the measure for simple graphs (in some sense this is "stability" of the measure).

Theorem 12. Let A be a simple graph. Let $W_{\text{out}} := \{B \subseteq \mathbb{R}^N | B \text{ is a simple graph and } A \subseteq B\}$, $W_{\text{in}} := \{C \subseteq \mathbb{R}^N | C \text{ is a simple graph and } C \subseteq A\}$. Then

$$\mu(A) = \inf_{B \in W_{\text{out}}} \mu(B) = \sup_{C \in W_{\text{in}}} \mu(C).$$
(15)

Proof. By monotonicity of μ , we have

$$\forall B \in W_{\text{out}}, \qquad \mu(A) \leqslant \mu(B). \tag{16}$$

On the other hand, $A \in W_{out}$. Therefore $\mu(A) = \inf_{B \in W_{out}} \mu(B)$. Similarly we can prove the other equality. \Box

Theorem 13. Let A be a simple graph, define $W'_{in} := \{C \subseteq \mathbb{R}^N | C \text{ is a simple graph and } C \subseteq A^o\}$. Then

$$\mu(A) = \sup_{C \in W'_{\text{in}}} \mu(C).$$
(17)

Proof. Since A is a simple graph, there are compact intervals $I_1, ..., I_n$ such that $I_i^o \cap I_j^o = \emptyset$ and $\mu(A) = \sum_{k=1}^n \mu(I_k)$. Take any $\boldsymbol{x}_k \in I_k$ and any $a \in (0, 1)$. Define

$$J_k := a \left(I_k - \boldsymbol{x}_k \right) + \boldsymbol{x}_k. \tag{18}$$

Then $J_k \subseteq I_k^o$ which implies

$$C := \bigcup_{k=1}^{n} J_k \subseteq A^o.$$
⁽¹⁹⁾

As $I_i^o \cap I_j^o = \varnothing$, we have $J_i^o \cap J_j^o = \varnothing$ and consequently

$$\mu(C) = \sum_{k=1}^{n} \mu(J_k) = a^N \mu(A).$$
(20)

Clearly $C \in W_{in}$ so

$$\sup_{B \in W'_{\text{in}}} \mu(B) \ge \mu(C) = a^N \mu(A).$$
(21)

By arbitrariness of a we have

$$\sup_{B \in W'_{\text{in}}} \mu(B) \ge \mu(A) \tag{22}$$

On the other hand ${\rm sup}_{B\,\in\,W_{\rm in}}\mu(B)\leqslant\mu(A)$ so the conclusion follows.

Exercise 3. Prove $J_k \subseteq I_k^o$ and then $C \subseteq A^o$.

Exercise 4. Prove that if for all $a \in (0,1)$ we have $\sup_{B \in W_{in}} \mu(B) \ge a^N \mu(A)$, then necessarily $\sup_{B \in W_{in}} \mu(B) \ge \mu(A)$.