Measuring simple graphs

Simple graphs

We introduce that idea of simple graphs:
Definition 1. $A \subseteq \mathbb{R}^{N}$ is a "simple graph" if there are compact intervals I_{1}, \ldots, I_{n} such that $A=\cup_{k=1}^{n} I_{k}$.
Theorem 2. Let A, B be simple graphs. Let $\boldsymbol{x}_{0} \in \mathbb{R}^{N}, a \in \mathbb{R}$. Then so are a $A, A+\boldsymbol{x}_{0}, A \cap B, A \cup B, A-B^{o}$.
Proof. As A, B are simple graphs, there are compact intervals I_{1}, \ldots, I_{n} and J_{1}, \ldots, J_{m} such that

$$
\begin{equation*}
A=\cup_{k=1}^{n} I_{k}, \quad B=\cup_{l=1}^{m} J_{l} . \tag{1}
\end{equation*}
$$

- a. We have

$$
\begin{equation*}
a A=\cup_{k=1}^{n}\left(a I_{k}\right) \tag{2}
\end{equation*}
$$

and the conclusion follows from the fact that $a I_{k}$ is also a compact interval.

- $A+\boldsymbol{x}_{0}$. We have

$$
\begin{equation*}
A+\boldsymbol{x}_{0}=\cup_{k=1}^{n}\left(I_{k}+\boldsymbol{x}_{0}\right) \tag{3}
\end{equation*}
$$

and the conclusion follows from the fact that $I_{k}+\boldsymbol{x}_{0}$ is also a compact interval.

- $A \cap B$. We have

$$
\begin{equation*}
A \cap B=\left[\cup_{k=1}^{n} I_{k}\right] \cap\left[\cup_{l=1}^{m} J_{l}\right]=\cup_{k=1}^{n} \cup_{l=1}^{m}\left(I_{k} \cap J_{l}\right) \tag{4}
\end{equation*}
$$

Thus all we need to show is that $I_{k} \cap J_{l}$ is a compact interval.
Let $I_{k}=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid x_{1} \in\left[a_{1}, b_{1}\right], x_{2} \in\left[a_{2}, b_{2}\right], \ldots, x_{N} \in\left[a_{N}, b_{N}\right]\right\}$ and $J_{l}=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid x_{1} \in\left[c_{1}, d_{1}\right], \ldots\right.$, $\left.x_{N} \in\left[c_{N}, d_{N}\right]\right\}$. Then we clearly have

$$
\begin{equation*}
I_{k} \cap J_{l}=\left\{\boldsymbol{x} \in \mathbb{R}^{N} \mid x_{1} \in\left[a_{1}, b_{1}\right] \cap\left[c_{1}, d_{1}\right], \ldots, x_{N} \in\left[a_{N}, b_{N}\right] \cap\left[c_{N}, d_{N}\right]\right\} \tag{5}
\end{equation*}
$$

which is still a compact interval.

- $A \cup B$. We have

$$
\begin{equation*}
A \cup B=\left[\cup_{k=1}^{n} I_{k}\right] \cup\left[\cup_{l=1}^{m} J_{l}\right] \tag{6}
\end{equation*}
$$

so it is a simple graph.

- $A-B^{o}$. Note that by our definition $\left(B^{o}\right)^{c}$ is not a simple graph so we cannot use $A-B^{o}=A \cap\left(B^{o}\right)^{c}$. Instead, as A, B are bounded, there is a compact interval I such that $A \cup B \subseteq I$. Now all we need to prove is that $I-B^{o}$ is a simple graph. Without loss of generality, we assume $I=[-R, R]^{N}$ for some $R>0$.
Now assume $B=\cup_{k=1}^{n} I_{n}$. Note that $B^{o} \neq \cup_{k=1}^{n} I_{n}^{o}$. Now consider the end points in x_{1} direction for each I_{n}, we have $2 n$ such points. Denote them by $x_{1}^{1} \leqslant x_{2}^{1} \leqslant \ldots \leqslant x_{2 n}^{1}$; Similarly we obtain $x_{1}^{i}, \ldots, x_{2 n}^{i}$ for every $i=2,3, \ldots, N$. Now let $x_{0}^{i}=-R, x_{2 n+1}^{i}=R$. If we consider the following intervals

$$
\begin{equation*}
J_{i_{1} i_{2} \ldots i_{N}}:=\left[x_{i_{1}}, x_{i_{1}+1}\right] \times \cdots \times\left[x_{i_{N}}, x_{i_{N}+1}\right] \tag{7}
\end{equation*}
$$

for some $i_{1}, \ldots, i_{N} \in\{0,2, \ldots, 2 n\}$, then we see that

$$
\begin{equation*}
I-B=\cup J_{i_{1} \ldots i_{N}} \tag{8}
\end{equation*}
$$

where the union is taken over all $J_{i_{1} \cdots i_{N}}$ satisfying $J_{i_{1} \cdots i_{N}}^{o} \cap B=\varnothing$. Therefore $I-B$ is a simple graph.

Remark 3. Note that in general rotating a simple graph does not give a simple graph anymore.

Exercise 1. Prove that if $A \cup B \subseteq I$ then $A-B=A \cap(I-B)$.
Exercise 2. Explain why in general $B^{o} \neq \cup_{k=1}^{n} I_{n}^{o}$.

Corollary 4. Let A_{1}, \ldots, A_{n} be simple graphs. Then so are $\cap_{k=1}^{n} A_{k}$ and $\cup_{k=1}^{n} A_{k}$.

Theorem 5. Let A be a simple graph. Then there are compact intervals I_{1}, \ldots, I_{n} satisfying $I_{i}^{o} \cap I_{j}^{o}=\varnothing$ for any $i \neq j$, such that

$$
\begin{equation*}
A=\cup_{k=1}^{n} I_{k} . \tag{9}
\end{equation*}
$$

Proof. The idea is similar to that in the proof for $A-B^{\circ}$ in the last theorem.

Measuring simple graphs

We will try to define a measure for all simple graphs. Thanks to Theorem 5 it suffices to define $\mu(I)$ for every compact interval I.

Definition 6. (Measure for compact intervals) Let $I=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{N}, b_{N}\right]$ be a compact interval in \mathbb{R}^{N}. We define it's Jordan measure to be

$$
\begin{equation*}
\mu(I):=\left(b_{1}-a_{1}\right) \cdots\left(b_{N}-a_{N}\right) \tag{10}
\end{equation*}
$$

Remark 7. This definition is more subtle than it looks. Explore to see whether this follows from $\mathrm{i}-\mathrm{v}$.

Definition 8. (Measure for simple graphs) Let A be a simple graph. Let I_{1}, \ldots, I_{n} be compact intervals satisfying $I_{i}^{o} \cap I_{j}^{o}=\varnothing$ for any $i \neq j$ and $A=\cup_{k=1}^{n} I_{k}$. Define

$$
\begin{equation*}
\mu(A)=\sum_{k=1}^{n} \mu\left(I_{k}\right) . \tag{11}
\end{equation*}
$$

Theorem 9. (Consistency) The above definition is consistent, that is $\mu(A)$ is independent of the choice of I_{1}, \ldots, I_{n}. In other words, if I_{1}, \ldots, I_{n} and J_{1}, \ldots, J_{m} satisfy $I_{i}^{o} \cap I_{j}^{o}=\varnothing, J_{p}^{o} \cap J_{q}^{o}=\varnothing$, and furthermore $A=\cup_{k=1}^{n} I_{k}=\cup_{l=1}^{m} J_{l}$, then

$$
\begin{equation*}
\sum_{k=1}^{n} \mu\left(I_{k}\right)=\sum_{l=1}^{m} \mu\left(J_{l}\right) \tag{12}
\end{equation*}
$$

Proof. Omitted.

Remark 10. Furthermore, note that here we are claiming that all simple graphs are measurable. To back up this claim, we need to check the consistency of the definition with $\mathrm{i}-\mathrm{v}$.

Theorem 11. Let μ be defined for all simple graphs as in Definition 8. Then within the set of all simple graphs, it satisfies $i-v$.

Proof.
i. Lineariy. Let A, B be simple graphs. Then there are compact intervals $I_{1}, \ldots, I_{n}, J_{1}, \ldots, J_{m}$ such that $I_{i}^{o} \cap I_{j}^{o}=\varnothing, J_{p}^{o} \cap J_{q}^{o}=\varnothing$, and furthermore $A=\cup_{k=1}^{n} I_{k}, B=\cup_{l=1}^{m} J_{l}$. Now we have

$$
\begin{equation*}
A \cup B=\left(\cup_{k=1}^{n} I_{k}\right) \cup\left(\cup_{l=1}^{m} J_{l}\right) . \tag{13}
\end{equation*}
$$

Thus all we need to show is $I_{k}^{o} \cap J_{l}^{o}=\varnothing$ which follows from $A \cap B=\varnothing$.
ii. Monotonicity: Let $A \subseteq B$. Let $C:=B-A$. It is also a simple graph and satisfies $C \cap A=\varnothing$. We have

$$
\begin{equation*}
\mu(B)=\mu(A)+\mu(C) \geqslant \mu(A) \tag{14}
\end{equation*}
$$

iii. Translation and rotation invariance. Note that rotation invariance doesn't apply here. The translation part is left as exercise.
iv. Homogeneity. Exercise.
v. Normalized. Trivial.

The following is a different way of defining the measure for simple graphs (in some sense this is "stability" of the measure).

Theorem 12. Let A be a simple graph. Let $W_{\text {out }}:=\left\{B \subseteq \mathbb{R}^{N} \mid B\right.$ is a simple graph and $\left.A \subseteq B\right\}$, $W_{\mathrm{in}}:=\left\{C \subseteq \mathbb{R}^{N} \mid C\right.$ is a simple graph and $\left.C \subseteq A\right\}$. Then

$$
\begin{equation*}
\mu(A)=\inf _{B \in W_{\text {out }}} \mu(B)=\sup _{C \in W_{\text {in }}} \mu(C) \tag{15}
\end{equation*}
$$

Proof. By monotonicity of μ, we have

$$
\begin{equation*}
\forall B \in W_{\text {out }}, \quad \mu(A) \leqslant \mu(B) \tag{16}
\end{equation*}
$$

On the other hand, $A \in W_{\text {out. }}$. Therefore $\mu(A)=\inf _{B \in W_{\text {out }}} \mu(B)$. Similarly we can prove the other equality.

Theorem 13. Let A be a simple graph, define $W_{\mathrm{in}}^{\prime}:=\left\{C \subseteq \mathbb{R}^{N} \mid C\right.$ is a simple graph and $\left.C \subseteq A^{o}\right\}$. Then

$$
\begin{equation*}
\mu(A)=\sup _{C \in W_{\mathrm{in}}^{\prime}} \mu(C) \tag{17}
\end{equation*}
$$

Proof. Since A is a simple graph, there are compact intervals I_{1}, \ldots, I_{n} such that $I_{i}^{o} \cap I_{j}^{o}=\varnothing$ and $\mu(A)=\sum_{k=1}^{n} \mu\left(I_{k}\right)$. Take any $\boldsymbol{x}_{k} \in I_{k}$ and any $a \in(0,1)$. Define

$$
\begin{equation*}
J_{k}:=a\left(I_{k}-\boldsymbol{x}_{k}\right)+\boldsymbol{x}_{k} . \tag{18}
\end{equation*}
$$

Then $J_{k} \subseteq I_{k}^{o}$ which implies

$$
\begin{equation*}
C:=\cup_{k=1}^{n} J_{k} \subseteq A^{o} . \tag{19}
\end{equation*}
$$

As $I_{i}^{o} \cap I_{j}^{o}=\varnothing$, we have $J_{i}^{o} \cap J_{j}^{o}=\varnothing$ and consequently

$$
\begin{equation*}
\mu(C)=\sum_{k=1}^{n} \mu\left(J_{k}\right)=a^{N} \mu(A) \tag{20}
\end{equation*}
$$

Clearly $C \in W_{\text {in }}$ so

$$
\begin{equation*}
\sup _{B \in W_{\mathrm{in}}^{\prime}} \mu(B) \geqslant \mu(C)=a^{N} \mu(A) \tag{21}
\end{equation*}
$$

By arbitrariness of a we have

$$
\begin{equation*}
\sup _{B \in W_{\text {in }}^{\prime}} \mu(B) \geqslant \mu(A) \tag{22}
\end{equation*}
$$

On the other hand $\sup _{B \in W_{\text {in }}} \mu(B) \leqslant \mu(A)$ so the conclusion follows.

Exercise 3. Prove $J_{k} \subseteq I_{k}^{o}$ and then $C \subseteq A^{o}$.
Exercise 4. Prove that if for all $a \in(0,1)$ we have $\sup _{B \in W_{\mathrm{in}}} \mu(B) \geqslant a^{N} \mu(A)$, then necessarily $\sup _{B \in W_{\mathrm{in}}} \mu(B) \geqslant \mu(A)$.

