
Application: Unconstrained optimization

Stationary points

Consider f :RN� R. The unconstrained optimization problem

max
x∈RN

f(x)
(

or min
x∈RN

f(x)
)

(1)

is about finding the maximum or minimum of f(x) over the whole space RN. In the following we will present
the theory for minima/miniimizers. The theory for maxima/maximizers can be obtained through obvious
changes.

The general strategy is the following:

1. Find all local minima/minimizers;

2. Pick the miniima/minimizer from these local minima/minimizers.

Recall that x0 is a local minimizer if and only if ∃r > 0, ∀x∈B(x0, r), f(x0) 6 f(x).

Previously we have derived the following necessary condition:

Theorem 1. Let x0 be a local minimizer for f : R
N � R and assume f is differentiable at x0. Then

(Df)(x0)= 0. In particular (grad f)(x0)= 0.

It is clear that the condition (Df)(x0) = 0 (or (grad f)(x0) = 0 is not sufficient, for example it does not
distinguishi between local maximizers and local minimizers. Furthermore there are x0 could be neither.

Example 2. Consider f(x, y)=x y. Then we have (grad f)(x, y)=
(

y

x

)

. Thus (grad f)(0, 0)=
(

0
0

)

. Since

the partial derivatives are continuous, this also means (Df)(0, 0)= 0.

Now we show that (0, 0) is neither local maximizer nor local minimizer. For any r > 0, set x= y = r/2, then
we have (x, y)∈B((0, 0), r) and

f(x, y) =
r2

4
> 0= f(0, 0) (2)

so (0, 0) is not a local maximizer.

Similarly setting −x = y = r/2 we have (x, y)∈B((0, 0), r) and

f(x, y)=−
r2

4
< 0 = f(0, 0) (3)

so (0, 0) is not a local minimizer.

Definition 3. Let f : RN � R be differentiable. Then a point x0 ∈R
N is called a stationary point of f if

and only if (grad f)(x0)= 0.

Exercise 1. Find all stationary points for f(x)7 x1 
 xN and discuss whether each of them is a local maximizer, local

minimizer, or neither.

Thus solving (grad f)=0 only gives us all stationary points. Previously we compare the values of f at each
stationary point to find global minimizer – note that we cannot find local minimizers this way. In the following
we will develop sufficient conditions for x0 to be a local minimizer using the theory of Taylor expansion.
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Remark 4. The above theory still applies in the case f : U � R where U ⊆R
N is open.

Quadratic functions

Consider a twice differentiable function f :RN � R and a stationary point x0. The idea is to approximate
f :RN� R at x0 be a quadratic polynomial

F (x)7 ∑

i=1,j=1

N

aij xi xj +
∑

i=1

N

bi xi + c. (4)

Thus we have to first fully understand local minimizers of quadratic functions.

First we simplify the formula for F .

• Notice that xi xj = xj xi. Thus only aij + aji is determined. So we take aij = aji. From now on we
always assume this.

Exercise 2. Let F (x, y)= 3 x2 + 2 x y + y2. Find a11, a12, a21, a22.

• Denote

A = ( aij )∈R
N×N , b=





b1�
bN



∈R
N. (5)

Then

F (x) =xT A x + bTx + c. (6)

Note that A =AT is symmetric.

Now we calculate

gradF = 2A x+ b (7)

therefore if x0 is a stationary point, then 2 Ax0 + b= 0.

Next let y7 x−x0. We have

F (y) = (y +x0)
T A (y + x0)+ bT (y + x0)+ c

= yT Ay + yT A x0 + x0
T Ay + x0

T Ax0 + bT y + bT x0 + c

= yT Ay + 2 yT Ax0 + yT b+ x0
T Ax0 + c

= yT Ay + yT (2A x0 + b)+ x0
T Ax0 + c

= yT Ay + (x0
T A x0 + c). (8)

Note that x0
T A x0 + c is a constant. Thus x0 being a local minimizer for F (x) is equivalent to 0 being a

local minimizer for G(y)7 yT A y.

Lemma 5. Let G(y)7 yT A y. Then 0 is a local minimizer for G if and only if G(y)> 0 for all y ∈RN.

Proof. “If” is obvious. For “only if”, assume 0 is a local minimizer, that is ∃r > 0, ∀‖y‖< r, G(y)> 0. Now
take any y ∈R

N. If y = 0 then obviously G(y)> 0. Otherwise set

v7 y

‖y‖

r

2
. (9)
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Then y =
2 ‖y‖

r
v and

G(y)= yT A y =
4 ‖y‖2

r2
vT A v > 0. (10)

Thus ends the proof. �

From the above lemma we have

Lemma 6. Let F (x)=xT A x+bTx+c be quadratic and x0 be its critical point. Then x0 is a local minimizer

of F if and only if for all v ∈R
N, vT Av > 0.

Exercise 3. Let F (x)=xT A x+bTx+ c be quadratic and x0 be its critical point. Then x0 is a local maximizer if and only

if for all v∈R
N, vT A v 60. If there are v1, v2 such that v1

T A v1 > 0 but v2
T A v2 < 0, then x0 is neither local maximizer

nor local minimizer.

We notice that the condition is in fact independent of x0 – it is purely a condition on A.

Definition 7. Let A∈R
N×N by symmetric: A = AT. Then A is called positive semi-definite if and only if

all v ∈R
N, vT A v >0; It is called positive definite if and only if all nonzero v ∈R

N, vT A v > 0. A is called

negative semi-definite if and only if all v ∈R
N, vT A v 6 0; It is called negative definite if and only if all

nonzero v ∈R
N, vT A v < 0.

Exercise 4. Let F (x) = xT A x+ bTx+ c be quadratic and x0 be its critical point. Then x0 is a strict local minimizer of

F , in the sense that there is r > 0, for all x∈B(x0, r), x� x0, if and only if A is positive definite.

Sufficient conditions for local optima

We try to apply the above understanding to general nonlinear functions. First notice: If F (x) = xT A x +
bTx + c, then

aij =
∂2F

∂xi∂xj
. (11)

Definition 8. (Hessian matrix) Let f :RN�R have continuous second order derivatives at x0. Then the

symmetric matrix
(

∂2f

∂xi∂xj
(x0)

)

is called the Hessian matrix of f at x0.

Theorem 9. (Second order sufficient conditions) Let f :RN � R have continuous second derivatives

at x0. Further assume that x0 is a stationary point. Then x0 is a local minimizer if the Hessian matrix at

x0 is positive definite.

Proof. By continuity of the second derivatives of f , the Hessian matrix H(x) is continuous in x. Thus there
is r > 0 such that for all x∈B(x0, r) and all nonzero v ∈R

N, vT H(x)v > 0.

Now for any x ∈ B(x0, r), x � x0, the Taylor expansion theorem gives (note that (grad f)(x0) = 0 by the
assumption that x0 is a critical point)

f(x) = f(x0) + (grad f)(x0) · (x−x0)+
1

2
(x−x0)

T H(ξ) (x−x0)

= f(x0) +
1

2
(x−x0)

T H(ξ) (x−x0) > f(x0). (12)

Here the last step follows from ξ∈B(x0, δ) which is a consequence of x∈B(x0, δ) and the Taylor expansion
theorem. Therefore x0 is a local minimizer of f . �
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Remark 10. Note that the above proof actually shows that x0 has to be strict local minimizer.

Corollary 11. (Second order necessary conditions) Let f :RN�R have continuous second derivatives

at x0. Further assume that x0 is a local minimizer, then the Hessian matrix H at x0 is positive semi-definite.

Proof. Assume not. Then there is v ∈R
N such that vT H(x0)v < 0. By continuity of H(x), there is δ > 0

such that for all x∈B(x0, δ), vT H(x)v < 0.

Now consider x7 x0 + t v with t <
δ

‖v‖
. Then by Taylor expansion theorem we have

f(x) = f(x0) + (grad f)(x0) · (x−x0)+
1

2
(x−x0)

T H(ξ) (x−x0)

= f(x0) +
t2

2
vT H(ξ)v < f(x0). (13)

Here the last step follows from ξ∈B(x0, δ) which is a consequence of x∈B(x0, δ) and the Taylor expansion
theorem.

Thus we reach contradiction. �

Note that positive semi-definiteness of the Hessian matrix is not sufficient for x0 to be a local minimizer.

Example 12. Consider f(x, y)= (y −x2) (y − 3 x2). We have

(grad f)(0, 0) =

(

0
0

)

(14)

so (0, 0) is a critical point of f . Furthermore we have the Hessian matrix at (0, 0) to be
(

0 0
0 1

)

which is

clearly positive semi-definite. But clearly (0, 0) is neither local minimizer nor local maximizer.

Exercise 5. Prove that (0, 0) is neither local minimizer nor local maximizer.

Exercise 6. Prove by definition that
(

0 0

0 1

)

is positive semi-definite.

Exercise 7. Give three other examples illustrating the insufficiency of positive semi-definiteness of the Hessian matrix.

Exercise 8. Find the extreme points of

f(x, y) =x3 + y3 +2 x2 + 4 y2 + 5. (15)

Question 13. Let A∈R
N×N be symmetric. Denote by A1,	 , AN the sub-matrices:

A1 =( a11 ), A2 =

(

a11 a12

a21 a22

)

,	 , AN−1 =







a11 
 a1(N−1)� �
a(N−1)1 
 a(N−1)(N−1)





, AN = A (16)

Prove that

a) A is positive semi-definite if and only if detAk > 0 for all k =1, 2,	 , N;

b) A is positive definite if and only if detAk > 0 for all k =1, 2,	 , N;

c) A is negative definite if and only if detAk > 0 for all even k’s and <0 for all odd k’s.
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