Application: Unconstrained optimization

Stationary points

Consider f:RY— R. The unconstrained optimization problem

max f(x) ( or min f(x)) (1)
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is about finding the maximum or minimum of f(z) over the whole space RY. In the following we will present
the theory for minima/miniimizers. The theory for maxima/maximizers can be obtained through obvious
changes.

The general strategy is the following:
1. Find all local minima/minimizers;
2. Pick the miniima/minimizer from these local minima/minimizers.

Recall that x is a local minimizer if and only if 3r >0, V& € B(xo,7), f(x0) < f(x).

Previously we have derived the following necessary condition:

Theorem 1. Let xg be a local minimizer for f: RN — R and assume f is differentiable at xo. Then
(D f)(x0) =0. In particular (grad f)(xzo)=0.

It is clear that the condition (D f)(xo) =0 (or (grad f)(zo) = 0 is not sufficient, for example it does not
distinguishi between local maximizers and local minimizers. Furthermore there are oy could be neither.

Example 2. Consider f(z,y)=xy. Then we have (grad f)(z, y) =< v ) Thus (grad f)(0,0) :< 8 ) Since

the partial derivatives are continuous, this also means (D f)(0,0) =0.

Now we show that (0,0) is neither local maximizer nor local minimizer. For any r >0, set z =y =1r/2, then
we have (z,y) € B((0,0),r) and
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so (0,0) is not a local maximizer.

Similarly setting —x =y =17/2 we have (z,y) € B((0,0),r) and

fle.y)= Lo <0=7(0.0) Q

so (0,0) is not a local minimizer.

Definition 3. Let f: RY — R be differentiable. Then a point xo € RY is called a stationary point of f if
and only if (grad f)(xzo)=0.

Exercise 1. Find all stationary points for f(x):=z; - zx and discuss whether each of them is a local maximizer, local
minimizer, or neither.

Thus solving (grad f) =0 only gives us all stationary points. Previously we compare the values of f at each
stationary point to find global minimizer — note that we cannot find local minimizers this way. In the following
we will develop sufficient conditions for @ to be a local minimizer using the theory of Taylor expansion.



Remark 4. The above theory still applies in the case f: U R where U CRY is open.

Quadratic functions

Consider a twice differentiable function f:IRY+— R and a stationary point ao. The idea is to approximate
f:RY — R at xy be a quadratic polynomial

N N
F(CB) = Z Qi %; T+ Z b;x;+c. (4)
i=1,j=1 i=1
Thus we have to first fully understand local minimizers of quadratic functions.

First we simplify the formula for F'.

e Notice that z; x; =z, x;. Thus only a;; + a;; is determined. So we take a;; = a;;. From now on we
always assume this.

Exercise 2. Let F(z,y)=3x2+22y+ y> Find a11,a12,a21, ass.

e Denote
by
A:(Qij)ERNXN, b= RV, (5)
by
Then
Flx)=zTAz+blz +c. (6)
Note that A= AT is symmetric.
Now we calculate
grad F=2Ax+b (7)

therefore if x( is a stationary point, then 2 A xy+ b=0.
Next let y:=ax — xg. We have
F(y) = (y+zo)"A(y+zo) +b" (y+xo) +c
= yTAy+yTAxg+axf Ay+xlAxo+ "y +b"x0+c
= yTAy+2yTAxo+yTb+al Axg+c
= yTAy+yT (2Axo+b)+afAxo+c
= yTAy+ (xf Azo+c). (8)

Note that 3 A @y + ¢ is a constant. Thus &g being a local minimizer for F(x) is equivalent to O being a
local minimizer for G(y):=yT Ay.

Lemma 5. Let G(y):=yT Ay. Then 0 is a local minimizer for G if and only if G(y) >0 for all y € RY.

Proof. “If” is obvious. For “only if”, assume 0 is a local minimizer, that is 3r >0, V||y|| <r, G(y) = 0. Now
take any y € RY. If y =0 then obviously G(y) > 0. Otherwise set

(9)



Then y= M v and

Thus ends the proof. O
From the above lemma we have

Lemma 6. Let F(z) =27 Az +bTx +c be quadratic and xq be its critical point. Then x is a local minimizer
of F if and only if for all v e RN, vT Av>0.

Exercise 3. Let F(x) =a” A x+ b’z + ¢ be quadratic and a be its critical point. Then g is a local maximizer if and only
if for all ve RN, vT A v <0. If there are vy, vo such that v?A v; >0 but ng vg < 0, then x( is neither local maximizer
nor local minimizer.

We notice that the condition is in fact independent of xg — it is purely a condition on A.

Definition 7. Let A€ RN *N by symmetric: A= AT. Then A is called positive semi-definite if and only if
allveRY, vTAv >0; It is called positive definite if and only if all nonzero v e RY, v" Av >0. A is called
negative semi-definite if and only if all v € RN, vI' Av < 0; It is called negative definite if and only if all
nonzero v € RN, vT Av <0.

Exercise 4. Let F(x) =x” Az + bTx + ¢ be quadratic and ag be its critical point. Then g is a strict local minimizer of
F, in the sense that there is r > 0, for all @ € B(xq, ), & # x, if and only if A is positive definite.

Sufficient conditions for local optima

We try to apply the above understanding to general nonlinear functions. First notice: If F(z) =x” Az +
bTx + ¢, then

0’F
aij—m. (11)

Definition 8. (Hessian matrix) Let f:R™+— R have continuous second order derivatives at xo. Then the
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aiafz]_(:vo)) is called the Hessian matrix of f at xo.

symmetric matric (
Theorem 9. (Second order sufficient conditions) Let f: RN+ R have continuous second derivatives
at xg. Further assume that xq is a stationary point. Then xq is a local minimizer if the Hessian matrix at
x( is positive definite.

Proof. By continuity of the second derivatives of f, the Hessian matrix H(x) is continuous in . Thus there

is r >0 such that for all € B(z,r) and all nonzero v € RY, vT H(z) v > 0.

Now for any x € B(xo, ), & # ®o, the Taylor expansion theorem gives (note that (grad f)(x¢) =0 by the
assumption that @ is a critical point)

f(@o) + (grad f)(wo) - (2 — x0) + % (@ —z0)" H(&) (z —x0)

= J(wo)+5 (@ —w)" H(£) (& — o) > f(x0). (12)

f(z)

Here the last step follows from & € B(xy, d) which is a consequence of « € B(xy,d) and the Taylor expansion
theorem. Therefore x( is a local minimizer of f. 0



Remark 10. Note that the above proof actually shows that o has to be strict local minimizer.

Corollary 11. (Second order necessary conditions) Let f: RY R have continuous second derivatives
at xg. Further assume that xg is a local minimizer, then the Hessian matrix H at xg is positive semi-definite.

Proof. Assume not. Then there is v € R such that v7 H(x) v < 0. By continuity of H(x), there is § >0
such that for all « € B(z,d), v H(x)v <0.
5

Now consider @ :=xg+tv with t < ol

Then by Taylor expansion theorem we have

f@) = f(wo)+ (arad f)(wo) - (x — wo) + 5 (& — w0) " H(€) (= — wo)
(o) + 5 0T H(E) v < (o) (13)

Here the last step follows from & € B(xg,d) which is a consequence of @ € B(xy,d) and the Taylor expansion
theorem.

Thus we reach contradiction. 0
Note that positive semi-definiteness of the Hessian matrix is not sufficient for @ to be a local minimizer.

Example 12. Consider f(z,y) = (y —2?) (y — 32%). We have
(@ 0,0~ { ) (1)

so (0, 0) is a critical point of f. Furthermore we have the Hessian matrix at (0, 0) to be ( 8 (1) ) which is

clearly positive semi-definite. But clearly (0, 0) is neither local minimizer nor local maximizer.

Exercise 5. Prove that (0,0) is neither local minimizer nor local maximizer.

Exercise 6. Prove by definition that ( 8 (1) ) is positive semi-definite.

Exercise 7. Give three other examples illustrating the insufficiency of positive semi-definiteness of the Hessian matrix.

Exercise 8. Find the extreme points of

F@y) =23+ 3 +222+4y%+5. (15)

Question 13. Let Ac RV XN be symmetric. Denote by A1, ..., Ay the sub-matrices:

( ail al(]\‘f—l) \

Ar=(an ),A2=( le 312 ),...,AN_lzk : : ),AN:A (16)
21 A22
AN-1)1 " G(N—-1)(N-1)

Prove that
a) A is positive semi-definite if and only if det A >0 for all k=1,2,..., N;
b) A is positive definite if and only if det A >0 for all k=1,2,...,N;

¢) A is negative definite if and only if det Ax>0 for all even k’s and <0 for all odd k’s.



