Application: Unconstrained optimization

Stationary points

Consider $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. The unconstrained optimization problem

$$
\begin{equation*}
\max _{\boldsymbol{x} \in \mathbb{R}^{N}} f(\boldsymbol{x}) \quad\left(\text { or } \min _{\boldsymbol{x} \in \mathbb{R}^{N}} f(x)\right) \tag{1}
\end{equation*}
$$

is about finding the maximum or minimum of $f(\boldsymbol{x})$ over the whole space \mathbb{R}^{N}. In the following we will present the theory for minima/miniimizers. The theory for maxima/maximizers can be obtained through obvious changes.
The general strategy is the following:

1. Find all local minima/minimizers;
2. Pick the miniima/minimizer from these local minima/minimizers.

Recall that \boldsymbol{x}_{0} is a local minimizer if and only if $\exists r>0, \forall \boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right), f\left(\boldsymbol{x}_{0}\right) \leqslant f(\boldsymbol{x})$.
Previously we have derived the following necessary condition:
Theorem 1. Let \boldsymbol{x}_{0} be a local minimizer for $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ and assume f is differentiable at \boldsymbol{x}_{0}. Then $(D f)\left(\boldsymbol{x}_{0}\right)=0$. In particular $(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$.

It is clear that the condition $(D f)\left(\boldsymbol{x}_{0}\right)=0\left(\operatorname{or}(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)=\mathbf{0}\right.$ is not sufficient, for example it does not distinguishi between local maximizers and local minimizers. Furthermore there are \boldsymbol{x}_{0} could be neither.

Example 2. Consider $f(x, y)=x y$. Then we have $(\operatorname{grad} f)(x, y)=\binom{y}{x}$. Thus $(\operatorname{grad} f)(0,0)=\binom{0}{0}$. Since the partial derivatives are continuous, this also means $(D f)(0,0)=0$.
Now we show that $(0,0)$ is neither local maximizer nor local minimizer. For any $r>0$, set $x=y=r / 2$, then we have $(x, y) \in B((0,0), r)$ and

$$
\begin{equation*}
f(x, y)=\frac{r^{2}}{4}>0=f(0,0) \tag{2}
\end{equation*}
$$

so $(0,0)$ is not a local maximizer.
Similarly setting $-x=y=r / 2$ we have $(x, y) \in B((0,0), r)$ and

$$
\begin{equation*}
f(x, y)=-\frac{r^{2}}{4}<0=f(0,0) \tag{3}
\end{equation*}
$$

so $(0,0)$ is not a local minimizer.
Definition 3. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be differentiable. Then a point $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$ is called a stationary point of f if and only if $(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$.

Exercise 1. Find all stationary points for $f(\boldsymbol{x}):=x_{1} \cdots x_{N}$ and discuss whether each of them is a local maximizer, local minimizer, or neither.

Thus solving $(\operatorname{grad} f)=0$ only gives us all stationary points. Previously we compare the values of f at each stationary point to find global minimizer - note that we cannot find local minimizers this way. In the following we will develop sufficient conditions for \boldsymbol{x}_{0} to be a local minimizer using the theory of Taylor expansion.

Remark 4. The above theory still applies in the case $f: U \mapsto \mathbb{R}$ where $U \subseteq \mathbb{R}^{N}$ is open.

Quadratic functions

Consider a twice differentiable function $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ and a stationary point \boldsymbol{x}_{0}. The idea is to approximate $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ at \boldsymbol{x}_{0} be a quadratic polynomial

$$
\begin{equation*}
F(\boldsymbol{x}):=\sum_{i=1, j=1}^{N} a_{i j} x_{i} x_{j}+\sum_{i=1}^{N} b_{i} x_{i}+c . \tag{4}
\end{equation*}
$$

Thus we have to first fully understand local minimizers of quadratic functions.
First we simplify the formula for F.

- Notice that $x_{i} x_{j}=x_{j} x_{i}$. Thus only $a_{i j}+a_{j i}$ is determined. So we take $a_{i j}=a_{j i}$. From now on we always assume this.

Exercise 2. Let $F(x, y)=3 x^{2}+2 x y+y^{2}$. Find $a_{11}, a_{12}, a_{21}, a_{22}$.

- Denote

$$
A=\left(a_{i j}\right) \in \mathbb{R}^{N \times N}, \quad \boldsymbol{b}=\left(\begin{array}{c}
b_{1} \tag{5}\\
\vdots \\
b_{N}
\end{array}\right) \in \mathbb{R}^{N}
$$

Then

$$
\begin{equation*}
F(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c . \tag{6}
\end{equation*}
$$

Note that $A=A^{T}$ is symmetric.
Now we calculate

$$
\begin{equation*}
\operatorname{grad} F=2 A \boldsymbol{x}+\boldsymbol{b} \tag{7}
\end{equation*}
$$

therefore if \boldsymbol{x}_{0} is a stationary point, then $2 A \boldsymbol{x}_{0}+\boldsymbol{b}=\mathbf{0}$.
Next let $\boldsymbol{y}:=\boldsymbol{x}-\boldsymbol{x}_{0}$. We have

$$
\begin{align*}
F(\boldsymbol{y}) & =\left(\boldsymbol{y}+\boldsymbol{x}_{0}\right)^{T} A\left(\boldsymbol{y}+\boldsymbol{x}_{0}\right)+\boldsymbol{b}^{T}\left(\boldsymbol{y}+\boldsymbol{x}_{0}\right)+c \\
& =\boldsymbol{y}^{T} A \boldsymbol{y}+\boldsymbol{y}^{T} A \boldsymbol{x}_{0}+\boldsymbol{x}_{0}^{T} A \boldsymbol{y}+\boldsymbol{x}_{0}^{T} A \boldsymbol{x}_{0}+\boldsymbol{b}^{T} \boldsymbol{y}+\boldsymbol{b}^{T} \boldsymbol{x}_{0}+c \\
& =\boldsymbol{y}^{T} A \boldsymbol{y}+2 \boldsymbol{y}^{T} A \boldsymbol{x}_{0}+\boldsymbol{y}^{T} \boldsymbol{b}+\boldsymbol{x}_{0}^{T} A \boldsymbol{x}_{0}+c \\
& =\boldsymbol{y}^{T} A \boldsymbol{y}+\boldsymbol{y}^{T}\left(2 A \boldsymbol{x}_{0}+\boldsymbol{b}\right)+\boldsymbol{x}_{0}^{T} A \boldsymbol{x}_{0}+c \\
& =\boldsymbol{y}^{T} A \boldsymbol{y}+\left(\boldsymbol{x}_{0}^{T} A \boldsymbol{x}_{0}+c\right) \tag{8}
\end{align*}
$$

Note that $\boldsymbol{x}_{0}^{T} A \boldsymbol{x}_{0}+c$ is a constant. Thus \boldsymbol{x}_{0} being a local minimizer for $F(\boldsymbol{x})$ is equivalent to $\mathbf{0}$ being a local minimizer for $G(\boldsymbol{y}):=\boldsymbol{y}^{T} A \boldsymbol{y}$.

Lemma 5. Let $G(\boldsymbol{y}):=\boldsymbol{y}^{T} A \boldsymbol{y}$. Then $\mathbf{0}$ is a local minimizer for G if and only if $G(\boldsymbol{y}) \geqslant 0$ for all $\boldsymbol{y} \in \mathbb{R}^{N}$.

Proof. "If" is obvious. For "only if", assume $\mathbf{0}$ is a local minimizer, that is $\exists r>0, \forall\|\boldsymbol{y}\|<r, G(\boldsymbol{y}) \geqslant 0$. Now take any $\boldsymbol{y} \in \mathbb{R}^{N}$. If $\boldsymbol{y}=\mathbf{0}$ then obviously $G(\boldsymbol{y}) \geqslant 0$. Otherwise set

$$
\begin{equation*}
\boldsymbol{v}:=\frac{\boldsymbol{y}}{\|\boldsymbol{y}\|} \frac{r}{2} \tag{9}
\end{equation*}
$$

Then $\boldsymbol{y}=\frac{2\|\boldsymbol{y}\|}{r} \boldsymbol{v}$ and

$$
\begin{equation*}
G(\boldsymbol{y})=\boldsymbol{y}^{T} A \boldsymbol{y}=\frac{4\|\boldsymbol{y}\|^{2}}{r^{2}} \boldsymbol{v}^{T} A \boldsymbol{v} \geqslant 0 \tag{10}
\end{equation*}
$$

Thus ends the proof.

From the above lemma we have

Lemma 6. Let $F(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c$ be quadratic and \boldsymbol{x}_{0} be its critical point. Then \boldsymbol{x}_{0} is a local minimizer of F if and only if for all $\boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} A \boldsymbol{v} \geqslant 0$.

Exercise 3. Let $F(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c$ be quadratic and \boldsymbol{x}_{0} be its critical point. Then \boldsymbol{x}_{0} is a local maximizer if and only if for all $\boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} A \boldsymbol{v} \leqslant 0$. If there are $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}$ such that $\boldsymbol{v}_{1}^{T} A \boldsymbol{v}_{1}>0$ but $\boldsymbol{v}_{2}^{T} A \boldsymbol{v}_{2}<0$, then \boldsymbol{x}_{0} is neither local maximizer nor local minimizer.

We notice that the condition is in fact independent of \boldsymbol{x}_{0} - it is purely a condition on A.
Definition 7. Let $A \in \mathbb{R}^{N \times N}$ by symmetric: $A=A^{T}$. Then A is called positive semi-definite if and only if all $\boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} A \boldsymbol{v} \geqslant 0$; It is called positive definite if and only if all nonzero $\boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} A \boldsymbol{v}>0$. A is called negative semi-definite if and only if all $\boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} A \boldsymbol{v} \leqslant 0$; It is called negative definite if and only if all nonzero $\boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} A \boldsymbol{v}<0$.

Exercise 4. Let $F(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}+\boldsymbol{b}^{T} \boldsymbol{x}+c$ be quadratic and \boldsymbol{x}_{0} be its critical point. Then \boldsymbol{x}_{0} is a strict local minimizer of
F, in the sense that there is $r>0$, for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right), \boldsymbol{x} \neq \boldsymbol{x}_{0}$, if and only if A is positive definite.

Sufficient conditions for local optima

We try to apply the above understanding to general nonlinear functions. First notice: If $F(\boldsymbol{x})=\boldsymbol{x}^{T} A \boldsymbol{x}+$ $\boldsymbol{b}^{T} \boldsymbol{x}+c$, then

$$
\begin{equation*}
a_{i j}=\frac{\partial^{2} F}{\partial x_{i} \partial x_{j}} \tag{11}
\end{equation*}
$$

Definition 8. (Hessian matrix) Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ have continuous second order derivatives at \boldsymbol{x}_{0}. Then the symmetric matrix $\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\left(\boldsymbol{x}_{0}\right)\right)$ is called the Hessian matrix of f at \boldsymbol{x}_{0}.

Theorem 9. (Second order sufficient conditions) Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ have continuous second derivatives at \boldsymbol{x}_{0}. Further assume that \boldsymbol{x}_{0} is a stationary point. Then \boldsymbol{x}_{0} is a local minimizer if the Hessian matrix at \boldsymbol{x}_{0} is positive definite.

Proof. By continuity of the second derivatives of f, the Hessian matrix $H(\boldsymbol{x})$ is continuous in \boldsymbol{x}. Thus there is $r>0$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right)$ and all nonzero $\boldsymbol{v} \in \mathbb{R}^{N}, \boldsymbol{v}^{T} H(\boldsymbol{x}) \boldsymbol{v}>0$.
Now for any $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, r\right), \boldsymbol{x} \neq \boldsymbol{x}_{0}$, the Taylor expansion theorem gives (note that $(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right)=\mathbf{0}$ by the assumption that \boldsymbol{x}_{0} is a critical point)

$$
\begin{align*}
f(\boldsymbol{x}) & =f\left(\boldsymbol{x}_{0}\right)+(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} H(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \\
& =f\left(\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} H(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)>f\left(\boldsymbol{x}_{0}\right) \tag{12}
\end{align*}
$$

Here the last step follows from $\boldsymbol{\xi} \in B\left(\boldsymbol{x}_{0}, \delta\right)$ which is a consequence of $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$ and the Taylor expansion theorem. Therefore \boldsymbol{x}_{0} is a local minimizer of f.

Remark 10. Note that the above proof actually shows that \boldsymbol{x}_{0} has to be strict local minimizer.

Corollary 11. (Second order necessary conditions) Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ have continuous second derivatives at \boldsymbol{x}_{0}. Further assume that \boldsymbol{x}_{0} is a local minimizer, then the Hessian matrix H at \boldsymbol{x}_{0} is positive semi-definite.

Proof. Assume not. Then there is $\boldsymbol{v} \in \mathbb{R}^{N}$ such that $\boldsymbol{v}^{T} H\left(\boldsymbol{x}_{0}\right) \boldsymbol{v}<0$. By continuity of $H(\boldsymbol{x})$, there is $\delta>0$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right), \boldsymbol{v}^{T} H(\boldsymbol{x}) \boldsymbol{v}<0$.

Now consider $\boldsymbol{x}:=\boldsymbol{x}_{0}+t \boldsymbol{v}$ with $t<\frac{\delta}{\|\boldsymbol{v}\|}$. Then by Taylor expansion theorem we have

$$
\begin{align*}
f(\boldsymbol{x}) & =f\left(\boldsymbol{x}_{0}\right)+(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\frac{1}{2}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} H(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \\
& =f\left(\boldsymbol{x}_{0}\right)+\frac{t^{2}}{2} \boldsymbol{v}^{T} H(\boldsymbol{\xi}) \boldsymbol{v}<f\left(\boldsymbol{x}_{0}\right) \tag{13}
\end{align*}
$$

Here the last step follows from $\boldsymbol{\xi} \in B\left(\boldsymbol{x}_{0}, \delta\right)$ which is a consequence of $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta\right)$ and the Taylor expansion theorem.

Thus we reach contradiction.

Note that positive semi-definiteness of the Hessian matrix is not sufficient for \boldsymbol{x}_{0} to be a local minimizer.

Example 12. Consider $f(x, y)=\left(y-x^{2}\right)\left(y-3 x^{2}\right)$. We have

$$
\begin{equation*}
(\operatorname{grad} f)(0,0)=\binom{0}{0} \tag{14}
\end{equation*}
$$

so $(0,0)$ is a critical point of f. Furthermore we have the Hessian matrix at $(0,0)$ to be $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ which is clearly positive semi-definite. But clearly $(0,0)$ is neither local minimizer nor local maximizer.

Exercise 5. Prove that $(0,0)$ is neither local minimizer nor local maximizer.
Exercise 6. Prove by definition that $\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$ is positive semi-definite.
Exercise 7. Give three other examples illustrating the insufficiency of positive semi-definiteness of the Hessian matrix.
Exercise 8. Find the extreme points of

$$
\begin{equation*}
f(x, y)=x^{3}+y^{3}+2 x^{2}+4 y^{2}+5 . \tag{15}
\end{equation*}
$$

Question 13. Let $A \in \mathbb{R}^{N \times N}$ be symmetric. Denote by A_{1}, \ldots, A_{N} the sub-matrices:

$$
A_{1}=\left(a_{11}\right), A_{2}=\left(\begin{array}{cc}
a_{11} & a_{12} \tag{16}\\
a_{21} & a_{22}
\end{array}\right), \ldots, A_{N-1}=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1(N-1)} \\
\vdots & & \vdots \\
a_{(N-1) 1} & \cdots & a_{(N-1)(N-1)}
\end{array}\right), A_{N}=A
$$

Prove that
a) A is positive semi-definite if and only if $\operatorname{det} A_{k} \geqslant 0$ for all $k=1,2, \ldots, N$;
b) A is positive definite if and only if $\operatorname{det} A_{k}>0$ for all $k=1,2, \ldots, N$;
c) A is negative definite if and only if $\operatorname{det} A_{k}>0$ for all even k 's and <0 for all odd k 's.

