Application: Unconstrained optimization

Stationary points

Consider $f: \mathbb{R}^N \to \mathbb{R}$. The unconstrained optimization problem

$$\max_{\boldsymbol{x}\in\mathbb{R}^N} f(\boldsymbol{x}) \qquad \left(\text{ or } \min_{\boldsymbol{x}\in\mathbb{R}^N} f(\boldsymbol{x}) \right) \tag{1}$$

is about finding the maximum or minimum of $f(\mathbf{x})$ over the whole space \mathbb{R}^N . In the following we will present the theory for minima/minimizers. The theory for maxima/maximizers can be obtained through obvious changes.

The general strategy is the following:

- 1. Find all local minima/minimizers;
- 2. Pick the minima/minimizer from these local minima/minimizers.

Recall that x_0 is a local minimizer if and only if $\exists r > 0, \forall x \in B(x_0, r), f(x_0) \leq f(x)$.

Previously we have derived the following necessary condition:

Theorem 1. Let \mathbf{x}_0 be a local minimizer for $f: \mathbb{R}^N \mapsto \mathbb{R}$ and assume f is differentiable at \mathbf{x}_0 . Then $(Df)(\mathbf{x}_0) = 0$. In particular $(\text{grad } f)(\mathbf{x}_0) = \mathbf{0}$.

It is clear that the condition $(Df)(\mathbf{x}_0) = 0$ (or $(\text{grad } f)(\mathbf{x}_0) = \mathbf{0}$ is not sufficient, for example it does not distinguish between local maximizers and local minimizers. Furthermore there are \mathbf{x}_0 could be neither.

Example 2. Consider f(x, y) = x y. Then we have $(\operatorname{grad} f)(x, y) = \begin{pmatrix} y \\ x \end{pmatrix}$. Thus $(\operatorname{grad} f)(0, 0) = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$. Since the partial derivatives are continuous, this also means (Df)(0, 0) = 0.

Now we show that (0,0) is neither local maximizer nor local minimizer. For any r > 0, set x = y = r/2, then we have $(x, y) \in B((0,0), r)$ and

$$f(x,y) = \frac{r^2}{4} > 0 = f(0,0) \tag{2}$$

so (0,0) is not a local maximizer.

Similarly setting -x = y = r/2 we have $(x, y) \in B((0, 0), r)$ and

$$f(x,y) = -\frac{r^2}{4} < 0 = f(0,0) \tag{3}$$

so (0,0) is not a local minimizer.

Definition 3. Let $f: \mathbb{R}^N \to \mathbb{R}$ be differentiable. Then a point $\mathbf{x}_0 \in \mathbb{R}^N$ is called a stationary point of f if and only if $(\text{grad } f)(\mathbf{x}_0) = \mathbf{0}$.

Exercise 1. Find all stationary points for $f(\mathbf{x}) := x_1 \cdots x_N$ and discuss whether each of them is a local maximizer, local minimizer, or neither.

Thus solving (grad f) = 0 only gives us all stationary points. Previously we compare the values of f at each stationary point to find global minimizer – note that we cannot find local minimizers this way. In the following we will develop sufficient conditions for x_0 to be a local minimizer using the theory of Taylor expansion.

Remark 4. The above theory still applies in the case $f: U \mapsto \mathbb{R}$ where $U \subseteq \mathbb{R}^N$ is open.

Quadratic functions

Consider a twice differentiable function $f: \mathbb{R}^N \to \mathbb{R}$ and a stationary point x_0 . The idea is to approximate $f: \mathbb{R}^N \to \mathbb{R}$ at x_0 be a quadratic polynomial

$$F(\boldsymbol{x}) := \sum_{i=1, j=1}^{N} a_{ij} x_i x_j + \sum_{i=1}^{N} b_i x_i + c.$$
(4)

Thus we have to first fully understand local minimizers of quadratic functions.

First we simplify the formula for F.

• Notice that $x_i x_j = x_j x_i$. Thus only $a_{ij} + a_{ji}$ is determined. So we take $a_{ij} = a_{ji}$. From now on we always assume this.

Exercise 2. Let $F(x, y) = 3x^2 + 2xy + y^2$. Find $a_{11}, a_{12}, a_{21}, a_{22}$.

• Denote

$$A = (a_{ij}) \in \mathbb{R}^{N \times N}, \qquad \boldsymbol{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_N \end{pmatrix} \in \mathbb{R}^N.$$
(5)

Then

$$F(\boldsymbol{x}) = \boldsymbol{x}^T \boldsymbol{A} \, \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c. \tag{6}$$

Note that $A = A^T$ is symmetric.

Now we calculate

$$\operatorname{grad} F = 2A \, \boldsymbol{x} + \boldsymbol{b} \tag{7}$$

therefore if \boldsymbol{x}_0 is a stationary point, then $2 A \boldsymbol{x}_0 + \boldsymbol{b} = \boldsymbol{0}$.

Next let $\boldsymbol{y} := \boldsymbol{x} - \boldsymbol{x}_0$. We have

$$F(\mathbf{y}) = (\mathbf{y} + \mathbf{x}_0)^T A (\mathbf{y} + \mathbf{x}_0) + \mathbf{b}^T (\mathbf{y} + \mathbf{x}_0) + c$$

$$= \mathbf{y}^T A \mathbf{y} + \mathbf{y}^T A \mathbf{x}_0 + \mathbf{x}_0^T A \mathbf{y} + \mathbf{x}_0^T A \mathbf{x}_0 + \mathbf{b}^T \mathbf{y} + \mathbf{b}^T \mathbf{x}_0 + c$$

$$= \mathbf{y}^T A \mathbf{y} + 2 \mathbf{y}^T A \mathbf{x}_0 + \mathbf{y}^T \mathbf{b} + \mathbf{x}_0^T A \mathbf{x}_0 + c$$

$$= \mathbf{y}^T A \mathbf{y} + \mathbf{y}^T (2A \mathbf{x}_0 + \mathbf{b}) + \mathbf{x}_0^T A \mathbf{x}_0 + c$$

$$= \mathbf{y}^T A \mathbf{y} + (\mathbf{x}_0^T A \mathbf{x}_0 + c).$$
(8)

Note that $\mathbf{x}_0^T A \mathbf{x}_0 + c$ is a constant. Thus \mathbf{x}_0 being a local minimizer for $F(\mathbf{x})$ is equivalent to **0** being a local minimizer for $G(\mathbf{y}) := \mathbf{y}^T A \mathbf{y}$.

Lemma 5. Let $G(\mathbf{y}) := \mathbf{y}^T A \mathbf{y}$. Then **0** is a local minimizer for G if and only if $G(\mathbf{y}) \ge 0$ for all $\mathbf{y} \in \mathbb{R}^N$.

Proof. "If" is obvious. For "only if", assume **0** is a local minimizer, that is $\exists r > 0, \forall || \boldsymbol{y} || < r, G(\boldsymbol{y}) \ge 0$. Now take any $\boldsymbol{y} \in \mathbb{R}^N$. If $\boldsymbol{y} = \boldsymbol{0}$ then obviously $G(\boldsymbol{y}) \ge 0$. Otherwise set

$$\boldsymbol{v} := \frac{\boldsymbol{y}}{\|\boldsymbol{y}\|} \frac{r}{2}.$$
(9)

Then $\boldsymbol{y} = \frac{2 \|\boldsymbol{y}\|}{r} \boldsymbol{v}$ and

$$G(\boldsymbol{y}) = \boldsymbol{y}^T A \, \boldsymbol{y} = \frac{4 \|\boldsymbol{y}\|^2}{r^2} \, \boldsymbol{v}^T A \, \boldsymbol{v} \ge 0.$$
(10)

Thus ends the proof.

From the above lemma we have

Lemma 6. Let $F(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$ be quadratic and \mathbf{x}_0 be its critical point. Then \mathbf{x}_0 is a local minimizer of F if and only if for all $\mathbf{v} \in \mathbb{R}^N$, $\mathbf{v}^T A \mathbf{v} \ge 0$.

Exercise 3. Let $F(\boldsymbol{x}) = \boldsymbol{x}^T A \, \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c$ be quadratic and \boldsymbol{x}_0 be its critical point. Then \boldsymbol{x}_0 is a local maximizer if and only if for all $\boldsymbol{v} \in \mathbb{R}^N$, $\boldsymbol{v}^T A \, \boldsymbol{v} \leq 0$. If there are $\boldsymbol{v}_1, \boldsymbol{v}_2$ such that $\boldsymbol{v}_1^T A \, \boldsymbol{v}_1 > 0$ but $\boldsymbol{v}_2^T A \, \boldsymbol{v}_2 < 0$, then \boldsymbol{x}_0 is neither local maximizer nor local minimizer.

We notice that the condition is in fact independent of x_0 – it is purely a condition on A.

Definition 7. Let $A \in \mathbb{R}^{N \times N}$ by symmetric: $A = A^T$. Then A is called positive semi-definite if and only if all $v \in \mathbb{R}^N$, $v^T A v \ge 0$; It is called positive definite if and only if all nonzero $v \in \mathbb{R}^N$, $v^T A v > 0$. A is called negative semi-definite if and only if all $v \in \mathbb{R}^N$, $v^T A v \le 0$; It is called negative definite if and only if all $v \in \mathbb{R}^N$, $v^T A v \le 0$; It is called negative definite if and only if all nonzero $v \in \mathbb{R}^N$, $v^T A v < 0$.

Exercise 4. Let $F(\boldsymbol{x}) = \boldsymbol{x}^T A \, \boldsymbol{x} + \boldsymbol{b}^T \boldsymbol{x} + c$ be quadratic and \boldsymbol{x}_0 be its critical point. Then \boldsymbol{x}_0 is a strict local minimizer of F, in the sense that there is r > 0, for all $\boldsymbol{x} \in B(\boldsymbol{x}_0, r)$, $\boldsymbol{x} \neq \boldsymbol{x}_0$, if and only if A is positive definite.

Sufficient conditions for local optima

We try to apply the above understanding to general nonlinear functions. First notice: If $F(\mathbf{x}) = \mathbf{x}^T A \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$, then

$$a_{ij} = \frac{\partial^2 F}{\partial x_i \partial x_j}.\tag{11}$$

Definition 8. (Hessian matrix) Let $f: \mathbb{R}^N \to \mathbb{R}$ have continuous second order derivatives at \boldsymbol{x}_0 . Then the symmetric matrix $\left(\frac{\partial^2 f}{\partial x_i \partial x_j}(\boldsymbol{x}_0)\right)$ is called the Hessian matrix of f at \boldsymbol{x}_0 .

Theorem 9. (Second order sufficient conditions) Let $f: \mathbb{R}^N \to \mathbb{R}$ have continuous second derivatives at \mathbf{x}_0 . Further assume that \mathbf{x}_0 is a stationary point. Then \mathbf{x}_0 is a local minimizer if the Hessian matrix at \mathbf{x}_0 is positive definite.

Proof. By continuity of the second derivatives of f, the Hessian matrix $H(\boldsymbol{x})$ is continuous in \boldsymbol{x} . Thus there is r > 0 such that for all $\boldsymbol{x} \in B(\boldsymbol{x}_0, r)$ and all nonzero $\boldsymbol{v} \in \mathbb{R}^N$, $\boldsymbol{v}^T H(\boldsymbol{x}) \boldsymbol{v} > 0$.

Now for any $\boldsymbol{x} \in B(\boldsymbol{x}_0, r)$, $\boldsymbol{x} \neq \boldsymbol{x}_0$, the Taylor expansion theorem gives (note that $(\text{grad } f)(\boldsymbol{x}_0) = \boldsymbol{0}$ by the assumption that \boldsymbol{x}_0 is a critical point)

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_0) + (\text{grad } f)(\boldsymbol{x}_0) \cdot (\boldsymbol{x} - \boldsymbol{x}_0) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^T H(\boldsymbol{\xi}) (\boldsymbol{x} - \boldsymbol{x}_0)$$

= $f(\boldsymbol{x}_0) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^T H(\boldsymbol{\xi}) (\boldsymbol{x} - \boldsymbol{x}_0) > f(\boldsymbol{x}_0).$ (12)

Here the last step follows from $\boldsymbol{\xi} \in B(\boldsymbol{x}_0, \delta)$ which is a consequence of $\boldsymbol{x} \in B(\boldsymbol{x}_0, \delta)$ and the Taylor expansion theorem. Therefore \boldsymbol{x}_0 is a local minimizer of f.

Remark 10. Note that the above proof actually shows that x_0 has to be strict local minimizer.

Corollary 11. (Second order necessary conditions) Let $f: \mathbb{R}^N \to \mathbb{R}$ have continuous second derivatives at \mathbf{x}_0 . Further assume that \mathbf{x}_0 is a local minimizer, then the Hessian matrix H at \mathbf{x}_0 is positive semi-definite.

Proof. Assume not. Then there is $\boldsymbol{v} \in \mathbb{R}^N$ such that $\boldsymbol{v}^T H(\boldsymbol{x}_0) \boldsymbol{v} < 0$. By continuity of $H(\boldsymbol{x})$, there is $\delta > 0$ such that for all $\boldsymbol{x} \in B(\boldsymbol{x}_0, \delta)$, $\boldsymbol{v}^T H(\boldsymbol{x}) \boldsymbol{v} < 0$.

Now consider $\boldsymbol{x} := \boldsymbol{x}_0 + t \, \boldsymbol{v}$ with $t < \frac{\delta}{\|\boldsymbol{v}\|}$. Then by Taylor expansion theorem we have

$$f(\boldsymbol{x}) = f(\boldsymbol{x}_0) + (\text{grad } f)(\boldsymbol{x}_0) \cdot (\boldsymbol{x} - \boldsymbol{x}_0) + \frac{1}{2} (\boldsymbol{x} - \boldsymbol{x}_0)^T H(\boldsymbol{\xi}) (\boldsymbol{x} - \boldsymbol{x}_0)$$

= $f(\boldsymbol{x}_0) + \frac{t^2}{2} \boldsymbol{v}^T H(\boldsymbol{\xi}) \boldsymbol{v} < f(\boldsymbol{x}_0).$ (13)

Here the last step follows from $\boldsymbol{\xi} \in B(\boldsymbol{x}_0, \delta)$ which is a consequence of $\boldsymbol{x} \in B(\boldsymbol{x}_0, \delta)$ and the Taylor expansion theorem.

Thus we reach contradiction.

Note that positive semi-definiteness of the Hessian matrix is not sufficient for x_0 to be a local minimizer.

Example 12. Consider $f(x, y) = (y - x^2)(y - 3x^2)$. We have

$$(\operatorname{grad} f)(0,0) = \begin{pmatrix} 0\\0 \end{pmatrix}$$
(14)

so (0, 0) is a critical point of f. Furthermore we have the Hessian matrix at (0, 0) to be $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ which is clearly positive semi-definite. But clearly (0, 0) is neither local minimizer nor local maximizer.

Exercise 5. Prove that (0,0) is neither local minimizer nor local maximizer.

Exercise 6. Prove by definition that $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ is positive semi-definite.

Exercise 7. Give three other examples illustrating the insufficiency of positive semi-definiteness of the Hessian matrix.

Exercise 8. Find the extreme points of

$$f(x, y) = x^3 + y^3 + 2x^2 + 4y^2 + 5.$$
(15)

Question 13. Let $A \in \mathbb{R}^{N \times N}$ be symmetric. Denote by $A_1, ..., A_N$ the sub-matrices:

$$A_{1} = (a_{11}), A_{2} = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \dots, A_{N-1} = \begin{pmatrix} a_{11} & \cdots & a_{1(N-1)} \\ \vdots & & \vdots \\ a_{(N-1)1} & \cdots & a_{(N-1)(N-1)} \end{pmatrix}, A_{N} = A$$
(16)

Prove that

- a) A is positive semi-definite if and only if det $A_k \ge 0$ for all k = 1, 2, ..., N;
- b) A is positive definite if and only if det $A_k > 0$ for all k = 1, 2, ..., N;
- c) A is negative definite if and only if det $A_k > 0$ for all even k's and <0 for all odd k's.