Taylor expansion

Main theorems

Theorem 1. Let U C RY be open and o € U. Let f: U — R be n + 1 times continuously partially
differentiable, and let € U be such that {tx + (1 —t) x|t € [0,1]} CU. Then there is€é=0x+ (1—0)x
for some 0 €[0,1] such that

f(a,-):g;n L0 (o) (w— w0)” + R, o) (1)
where a = (aq,...,an) is a multi-index (explained below), and the remainder
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Notation. (Multi-index) A multi-index (au, ..., ay) is a vector in (N U{0})Y that is each a; € {0, 1,2,
3,...}. Then

o Jalimart - +ay;
o ali=(a!)- (an!)
e For any x € RV,

«

%= Q. (3)

e For any f:RY— R with all |a|-th order partial derivatives continuous,
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Exercise 1. Let o, 8 be multi-indices. Let f: RN — R be such that all its (Ja| + |3|)-th order partial derivatives are

continuous. Prove that
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o o“lfy 0 a9l f (5)
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and thus can simply be denoted 2 s ,f

Proof. Set g(t):= f(tx+ (1 —t) xo) = f(xo+t(x — ). Denote €:=(x —xp). Then applying the change
rule we have
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Note that formally we can write
bl 2
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In general,

g(t) = <§1 ot b 8N)nf. ®)

Now consider a particular multi-index « with |a| =n. We need to figure out the factor before % in g™ (t).

First notice that when « is fixed, the &-part of thc; factor must be £€%. All we need to do now is to count
how many times £“ 82:&

g = 3 e oL )

lee|=n.

Now recall the single variable Taylor expansion:

o) = g0)= 3 L0 4 gy (10)
R
k<n
This translates exactly to
_ 1 0%f o 1 0%f n
f0= 3, S e 3, g @) )
as desired. O

If we require less differentiability, the explicit formula (2) is not available anymore. But we can still conclude
that R,(x,xo) is small compared to other terms.

Theorem 2. Let U CRY be open and xo€U. Let f:U — R be n times continuously partially differentiable,
and let & €U be such that {t x+ (1 —t) xo|t €[0,1]} CU. Then there is E=0x + (1 —0) xg for some 6 €[0,1]
such that

@)=Y 0 (o) (@~ 20)" + Rulw, 20) (12
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with limg_, 4, & — o)

Proof. From the previous theorem we have

fle)= Z ;' gaic(wo (x —xp)*+ Z 8af ) (x —x0)"™ (13)

la|]<n—1 la|=n

Taking difference we have

_ 1| 0%f o~ f
R = 3 2| S0 - Selien]| @ - (1)
la|=n
The conclusion now follows from the continuity of the n-th partial derivatives of f. O

Exercise 2. Calculate the Taylor expansion of the following functions at (0,0) and (1, —1):

a) f(z,y)=22?—2y—y>—6z—3y+5;



b) g(z,y,2)=a*+y*+22—3zyz
Exercise 3. Calculate the second-order Taylor expansion of f(z,y,2)=y?z+xe? at (1,0, —2).

Exercise 4. Prove that
(cosz/cos y)

lim S Sbudchind Bttt
(z,9)—(0,0) 1 — (2 +y2)/2

Exercise 5. State and prove theorems about Taylor expansion of functions f: RY — RM

Taylor expansion to degrees 1 and 2

The most useful Taylor exanpsions in practice are the following two cases

1. n=1:
1 oo 1 o .
@) = |£1 a! (9w£( o) (@ — )" + ZQ o 6w£ ) (& — o)
N N 5
= f@0)+ Y 2w (5 wi0)+ Y 5 2L (E) (i~ )
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= [f(zo) + (grad f)(@o) - (z — 20) + (z — 20)

Here H; is the “Hessian matrix” of f:

_(_2f
Hf_ <8:E16x]>

Exercise 6. Write down the Hessian matrix for f(z,y,z).

2. n=2. Similarly we have

(grad f) (o) - (x — x0) + (@ — w0) "H (o) (x — ®0) + Rn(x, z0)

where
lim Rn(, 20) _ =0.
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