
Taylor expansion

Main theorems

Theorem 1. Let U ⊆ R
N be open and x0 ∈ U. Let f : U � R be n + 1 times continuously partially

differentiable, and let x ∈U be such that {t x + (1− t) x0O t∈ [0, 1]}⊆U. Then there is ξ = θ x + (1− θ) x0

for some θ ∈ [0, 1] such that

f(x) =
∑

|α|6n

1

α!

∂αf

∂xα
(x0) (x−x0)

α + Rn(x, x0) (1)

where α = (α1,	 , αN) is a multi-index (explained below), and the remainder

Rn(x, x0)7 ∑

|α|=n+1

1

α!

∂αf

∂xα
(ξ) (x−x0)

n+1 (2)

Notation. (Multi-index) A multi-index (α1, 	 , αN) is a vector in (N ∪ {0})N that is each αi ∈ {0, 1, 2,
3,	 }. Then

• |α|7 α1 +
 + αN;

• α!7 (α1!)
 (αN!)

• For any x∈R
N,

xα7 x1
α1
xN

αN. (3)

• For any f :RN� R with all |α|-th order partial derivatives continuous,

∂|α|f

∂xα
7 ∂|α|f

∂x1
α1
 ∂xN

αN
. (4)

Exercise 1. Let α, β be multi-indices. Let f : RN � R be such that all its (|α| + |β |)-th order partial derivatives are

continuous. Prove that

∂|β|

∂xβ

(

∂|α|f

∂xα

)

=
∂|α|

∂xα

(

∂|β |f

∂xβ

)

(5)

and thus can simply be denoted
∂|α+β|f

∂xα+β
.

Proof. Set g(t)7 f(t x+ (1− t) x0)= f(x0 + t (x−x0)). Denote ξ7 (x−x0). Then applying the change
rule we have

g ′(t) =
∑

i=1

N

ξi
∂f

∂xi
, g ′′(t)=

∑

i,j=1

N

ξi ξj
∂2f

∂xi∂xj
	 (6)

Note that formally we can write

g ′′(t)=

(

ξ1
∂

∂x1
+
 + ξN

∂

∂xN

)

2

f. (7)
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In general,

g(n)(t)=

(

ξ1
∂

∂x1
+
 + ξN

∂

∂xN

)n

f. (8)

Now consider a particular multi-index α with |α|=n. We need to figure out the factor before
∂nf

∂xα
in g(n)(t).

First notice that when α is fixed, the ξ-part of the factor must be ξα. All we need to do now is to count
how many times ξα ∂n

∂xα
appears. This number is

n!

α!
. Consequently

g(n)(t)=
∑

|α|=n

n!

α!
ξα ∂nf

∂xα
. (9)

Now recall the single variable Taylor expansion:

g(1)− g(0)=
∑

k6n

g(k)(0)

k!
+ g(n+1)(θ). (10)

This translates exactly to

f(x)=
∑

|α|6n

1

α!

∂αf

∂xα
(x0) (x−x0)

α +
∑

|α|=n+1

1

α!

∂αf

∂xα
(ξ) (x−x0)

n+1 (11)

as desired. �

If we require less differentiability, the explicit formula (2) is not available anymore. But we can still conclude
that Rn(x, x0) is small compared to other terms.

Theorem 2. Let U ⊆R
N be open and x0∈U. Let f :U� R be n times continuously partially differentiable,

and let x∈U be such that {t x+(1− t) x0O t∈ [0,1]}⊆U. Then there is ξ = θ x+(1− θ) x0 for some θ∈ [0,1]
such that

f(x)=
∑

|α|6n

1

α!

∂αf

∂xα
(x0) (x−x0)

α + Rn(x, x0) (12)

with limx� x0

Rn(x, x0)

(x −x0)n
= 0.

Proof. From the previous theorem we have

f(x) =
∑

|α|6n−1

1

α!

∂αf

∂xα
(x0) (x−x0)α +

∑

|α|=n

1

α!

∂αf

∂xα
(ξ) (x−x0)n (13)

Taking difference we have

Rn(x, x0)=
∑

|α|=n

1

α!

[

∂αf

∂xα
(ξ)−

∂αf

∂xα
(x0)

]

(x−x0)n. (14)

The conclusion now follows from the continuity of the n-th partial derivatives of f . �

Exercise 2. Calculate the Taylor expansion of the following functions at (0, 0) and (1,−1):

a) f(x, y)= 2 x2− x y − y2− 6 x − 3 y + 5;
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b) g(x, y, z) = x2 + y2 + z2− 3 x y z.

Exercise 3. Calculate the second-order Taylor expansion of f(x, y, z)= y2 z + x ez at (1, 0,−2).

Exercise 4. Prove that

lim
(x,y)� (0,0)

(cosx/cos y)

1− (x2 + y2)/2
= 1. (15)

Exercise 5. State and prove theorems about Taylor expansion of functions f :RN� R
M.

Taylor expansion to degrees 1 and 2

The most useful Taylor exanpsions in practice are the following two cases:

1. n = 1:

f(x) =
∑

|α|61

1

α!

∂αf

∂xα
(x0) (x−x0)

α +
∑

|α|=2

1

α!

∂αf

∂xα
(ξ) (x−x0)

n

= f(x0) +
∑

i=1

N
∂f

∂xi
(x0) (xi −xi0)+

∑

i=1

N
1

2

∂2f

∂xi
2 (ξ) (xi − xi0)

2

+
∑

i<j

∂2f

∂xi∂xj
(ξ) (xi − xi0) (xj − xj0)

= f(x0) + (grad f)(x0) · (x−x0)+ (x−x0)
THf(ξ) (x−x0).

Here Hf is the “Hessian matrix” of f :

Hf =

(

∂2f

∂xi∂xj

)

. (16)

Exercise 6. Write down the Hessian matrix for f(x, y, z).

2. n = 2. Similarly we have

f(x)= f(x0) + (grad f)(x0) · (x−x0)+ (x−x0)
THf(x0) (x−x0) +Rn(x, x0) (17)

where

lim
x→x0

Rn(x, x0)

‖x−x0‖2
= 0. (18)
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