Taylor expansion

Main theorems

Theorem 1. Let $U \subseteq \mathbb{R}^{N}$ be open and $\boldsymbol{x}_{0} \in U$. Let $f: U \mapsto \mathbb{R}$ be $n+1$ times continuously partially differentiable, and let $\boldsymbol{x} \in U$ be such that $\left\{t \boldsymbol{x}+(1-t) \boldsymbol{x}_{\mathbf{0}} \mid t \in[0,1]\right\} \subseteq U$. Then there is $\boldsymbol{\xi}=\theta \boldsymbol{x}+(1-\theta) \boldsymbol{x}_{0}$ for some $\theta \in[0,1]$ such that

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{|\alpha| \leqslant n} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{\alpha}+R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right) \tag{1}
\end{equation*}
$$

where $\alpha=\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is a multi-index (explained below), and the remainder

$$
\begin{equation*}
R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right):=\sum_{|\alpha|=n+1} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{n+1} \tag{2}
\end{equation*}
$$

Notation. (Multi-index) A multi-index $\left(\alpha_{1}, \ldots, \alpha_{N}\right)$ is a vector in $(\mathbb{N} \cup\{0\})^{N}$ that is each $\alpha_{i} \in\{0,1,2$, $3, \ldots\}$. Then

- $|\alpha|:=\alpha_{1}+\cdots+\alpha_{N}$;
- $\alpha!:=\left(\alpha_{1}!\right) \cdots\left(\alpha_{N}!\right)$
- For any $\boldsymbol{x} \in \mathbb{R}^{N}$,

$$
\begin{equation*}
\boldsymbol{x}^{\alpha}:=x_{1}^{\alpha_{1}} \ldots x_{N}^{\alpha_{N}} \tag{3}
\end{equation*}
$$

- For any $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ with all $|\alpha|$-th order partial derivatives continuous,

$$
\begin{equation*}
\frac{\partial^{|\alpha|} f}{\partial \boldsymbol{x}^{\alpha}}:=\frac{\partial^{|\alpha|} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{N}^{\alpha_{N}}} \tag{4}
\end{equation*}
$$

Exercise 1. Let α, β be multi-indices. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ be such that all its $(|\alpha|+|\beta|)$-th order partial derivatives are continuous. Prove that

$$
\begin{equation*}
\frac{\partial^{|\beta|}}{\partial \boldsymbol{x}^{\beta}}\left(\frac{\partial^{|\alpha|} f}{\partial \boldsymbol{x}^{\alpha}}\right)=\frac{\partial^{|\alpha|}}{\partial \boldsymbol{x}^{\alpha}}\left(\frac{\partial^{|\beta|} f}{\partial \boldsymbol{x}^{\beta}}\right) \tag{5}
\end{equation*}
$$

and thus can simply be denoted $\frac{\partial^{|\alpha+\beta|} f}{\partial \boldsymbol{x}^{\alpha+\beta}}$.

Proof. Set $g(t):=f\left(t \boldsymbol{x}+(1-t) \boldsymbol{x}_{0}\right)=f\left(\boldsymbol{x}_{0}+t\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right)$. Denote $\boldsymbol{\xi}:=\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)$. Then applying the change rule we have

$$
\begin{equation*}
g^{\prime}(t)=\sum_{i=1}^{N} \xi_{i} \frac{\partial f}{\partial x_{i}}, \quad g^{\prime \prime}(t)=\sum_{i, j=1}^{N} \xi_{i} \xi_{j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \ldots \tag{6}
\end{equation*}
$$

Note that formally we can write

$$
\begin{equation*}
g^{\prime \prime}(t)=\left(\xi_{1} \frac{\partial}{\partial x_{1}}+\cdots+\xi_{N} \frac{\partial}{\partial x_{N}}\right)^{2} f \tag{7}
\end{equation*}
$$

In general,

$$
\begin{equation*}
g^{(n)}(t)=\left(\xi_{1} \frac{\partial}{\partial x_{1}}+\cdots+\xi_{N} \frac{\partial}{\partial x_{N}}\right)^{n} f \tag{8}
\end{equation*}
$$

Now consider a particular multi-index α with $|\alpha|=n$. We need to figure out the factor before $\frac{\partial^{n} f}{\partial \boldsymbol{x}^{\alpha}}$ in $g^{(n)}(t)$. First notice that when α is fixed, the $\boldsymbol{\xi}$-part of the factor must be $\boldsymbol{\xi}^{\alpha}$. All we need to do now is to count how many times $\boldsymbol{\xi}^{\alpha} \frac{\partial^{n}}{\partial \boldsymbol{x}^{\alpha}}$ appears. This number is $\frac{n!}{\alpha!}$. Consequently

$$
\begin{equation*}
g^{(n)}(t)=\sum_{|\alpha|=n} \frac{n!}{\alpha!} \boldsymbol{\xi}^{\alpha} \frac{\partial^{n} f}{\partial \boldsymbol{x}^{\alpha}} \tag{9}
\end{equation*}
$$

Now recall the single variable Taylor expansion:

$$
\begin{equation*}
g(1)-g(0)=\sum_{k \leqslant n} \frac{g^{(k)}(0)}{k!}+g^{(n+1)}(\theta) \tag{10}
\end{equation*}
$$

This translates exactly to

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{|\alpha| \leqslant n} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{\alpha}+\sum_{|\alpha|=n+1} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{n+1} \tag{11}
\end{equation*}
$$

as desired.

If we require less differentiability, the explicit formula (2) is not available anymore. But we can still conclude that $R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right)$ is small compared to other terms.

Theorem 2. Let $U \subseteq \mathbb{R}^{N}$ be open and $\boldsymbol{x}_{0} \in U$. Let $f: U \mapsto \mathbb{R}$ be n times continuously partially differentiable, and let $\boldsymbol{x} \in U$ be such that $\left\{t \boldsymbol{x}+(1-t) \boldsymbol{x}_{\mathbf{0}} \mid t \in[0,1]\right\} \subseteq U$. Then there is $\boldsymbol{\xi}=\theta \boldsymbol{x}+(1-\theta) \boldsymbol{x}_{0}$ for some $\theta \in[0,1]$ such that

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{|\alpha| \leqslant n} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{\alpha}+R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right) \tag{12}
\end{equation*}
$$

with $\lim _{\boldsymbol{x} \longrightarrow \boldsymbol{x}_{0}} \frac{R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right)}{\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{n}}=0$.

Proof. From the previous theorem we have

$$
\begin{equation*}
f(\boldsymbol{x})=\sum_{|\alpha| \leqslant n-1} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{\alpha}+\sum_{|\alpha|=n} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{n} \tag{13}
\end{equation*}
$$

Taking difference we have

$$
\begin{equation*}
R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right)=\sum_{|\alpha|=n} \frac{1}{\alpha!}\left[\frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}(\boldsymbol{\xi})-\frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}\left(\boldsymbol{x}_{0}\right)\right]\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{n} . \tag{14}
\end{equation*}
$$

The conclusion now follows from the continuity of the n-th partial derivatives of f.

Exercise 2. Calculate the Taylor expansion of the following functions at $(0,0)$ and $(1,-1)$:
a) $f(x, y)=2 x^{2}-x y-y^{2}-6 x-3 y+5$;
b) $g(x, y, z)=x^{2}+y^{2}+z^{2}-3 x y z$.

Exercise 3. Calculate the second-order Taylor expansion of $f(x, y, z)=y^{2} z+x e^{z}$ at $(1,0,-2)$.
Exercise 4. Prove that

$$
\begin{equation*}
\lim _{(x, y) \longrightarrow(0,0)} \frac{(\cos x / \cos y)}{1-\left(x^{2}+y^{2}\right) / 2}=1 \tag{15}
\end{equation*}
$$

Exercise 5. State and prove theorems about Taylor expansion of functions $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$.

Taylor expansion to degrees 1 and 2

The most useful Taylor exanpsions in practice are the following two cases:

1. $n=1$:

$$
\begin{aligned}
f(\boldsymbol{x})= & \sum_{|\alpha| \leqslant 1} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}\left(\boldsymbol{x}_{0}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{\alpha}+\sum_{|\alpha|=2} \frac{1}{\alpha!} \frac{\partial^{\alpha} f}{\partial \boldsymbol{x}^{\alpha}}(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{n} \\
= & f\left(\boldsymbol{x}_{0}\right)+\sum_{i=1}^{N} \frac{\partial f}{\partial x_{i}}\left(\boldsymbol{x}_{0}\right)\left(x_{i}-x_{i 0}\right)+\sum_{i=1}^{N} \frac{1}{2} \frac{\partial^{2} f}{\partial x_{i}^{2}}(\boldsymbol{\xi})\left(x_{i}-x_{i 0}\right)^{2} \\
& +\sum_{i<j} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(\boldsymbol{\xi})\left(x_{i}-x_{i 0}\right)\left(x_{j}-x_{j 0}\right) \\
= & f\left(\boldsymbol{x}_{0}\right)+(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} H_{f}(\boldsymbol{\xi})\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)
\end{aligned}
$$

Here H_{f} is the "Hessian matrix" of f :

$$
\begin{equation*}
H_{f}=\left(\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right) \tag{16}
\end{equation*}
$$

Exercise 6. Write down the Hessian matrix for $f(x, y, z)$.
2. $n=2$. Similarly we have

$$
\begin{equation*}
f(\boldsymbol{x})=f\left(\boldsymbol{x}_{0}\right)+(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right) \cdot\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)^{T} H_{f}\left(\boldsymbol{x}_{\mathbf{0}}\right)\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)+R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right) \tag{17}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{\boldsymbol{x} \rightarrow \boldsymbol{x}_{0}} \frac{R_{n}\left(\boldsymbol{x}, \boldsymbol{x}_{0}\right)}{\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}}=0 \tag{18}
\end{equation*}
$$

