Definitions

Second order partial derivatives

Definition 1. Let f: RN — R. If the j-th partial derivative of I RN R ewists at xo € RY, then we call

. Oz,
o (ﬂ> a second order partial derivative for the function f at x.
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Remark 2. Clearly we can define second order partial derivatives for vector functions in a similar manner.

Notation. Usually we simply denote
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When j =1, we write

Example 3. Let f(z,y)=xsiny. Find

Solution. We have
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First calculate for (z,y) # (0,0),




at (0,0) since f(0,y)=0, we have 2 (O 0) =0. Thus

x2—y2 4I2y2
I|:I2+y2_(;p2_|_y2)2 (I,y)#(0,0)
0 (z,y)=(0,0)

of
Ay

a(a
Now we calculate ﬁ(a_{/) at (z,y)# (0,0):
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At (z,y)=(0,0), we have
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when (z,y) # (0,0) but they differ at (0,0).
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Exercise 1. Prove that 9 and (%c are continuous functions.
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Exercise 2. Prove that ai afy an d f are both continuous everywhere except at (0,0).
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Theorem 5. Let f(z,y):R*— R. Assume that - a0y and 2L

Bgor OT€ both continuous at (xg, yo), then
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8(18fy( 0, Yo) = aayaf( 0s Y0)- (14)

Proof. Applying MVT twice to A:= f(z,y) — f(z0,y) = f (2, y0) + f (20, yo):
First let ¢(y):= f(z,y) — f(zo,y). Then

A = »(y) = ¢(yo)

= ¢'(n) (y — vo)
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Similarly, letting (x):= f(x,y) — f(z, yo) we have
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A= () = vla) = 5 (€)= a0) (4= o). (16)
Therefore
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Note that n,7n’, &, ¢’ all depend on (z,y) but on the other hand satisfy
(€7, &) = (zo, wo)ll, 1(n", m) = (o, yo) | < (=, y) = (0, o) |- (18)

Letting (z, y) — (w0, yo) and taking advatage of the continuity of ;:8]; and ;y—;i,

conclusion. O

we reach the desired

Exercise 3. What if we directly apply MVT twice to

A=[f(=z,y) = f(zo, v)] = [f (=, yo) — f(z0, yo)] (19)

without introducing auxiliary functions such as ¢(y)? Can we still prove the theorem?
Exercise 4. Prove that there is no f:R?— R such that
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for all (z,y) € R2.

Problem 1. (PKUP) Let f:R?— R. Assume that 01 0f 9°f ,re continuous at (0, Y0), then
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o2 exists and is continuous at (zo, yo), and furthermore ﬂ(mg, yo) = ﬂ(gvo, Y0)- (21)
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Problem 2. (PKUP) Let f: R?— R. Assume 27, ‘l?f; are differentiable at (z0, yo). Then
2L (w090 = w0, wo). (22)
Higher order partial derivatives
The definition is similar:
o"f - < orlf > (23)
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Example 6. Let f(x,y):= 2332 calculate

Solution. We have




and similarly
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Exercise 5. (PKUP) Let f(z,y)=2siny+ y3sinz. Find _or
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Exercise 6. (PKUP) Let f(z,y)=sin(z2+ y?). Find %
Exercise 7. (PKUP) Let
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Exercise 8. (PKUP) Prove that
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where a,b € R, satisfies
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Exercise 9. (PKUP) Let f(z,y):=(z —z0)? (y — y0)? with p, ¢ e NU{0}. Find ;:Jp;;:q
Exercise 10. (PKUP) Let f(z,y):= 2% Find 2L wn eNU{0}, z#
xercise 10. et f(z,y):=2— Find == where m,n , TF Y.

Exercise 11. (PKUP) Let f(z,y):=In(az+by). Find %

art q+rf

i = z+y+z Ry
Exercise 12. (PKUP) Let f(z,y,2):=zyze . Find e oy

where p, ¢,7 € NU{0}.

Problem 3. State and prove the theorem about order of taking derivatives for higher order partial derivatives of f: RN — R.

Problem 4. Solve the equation (assume all second order partial derivatives of u are continuous.)
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through transforming it to % =0 via the change of variable { =ax +by,n=cxz + dy for some appropriate constants a,
b,c,d.

Problem 5. Prove that under the change of variables x =1 cos, y =r sin @, the equation
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