Definitions

Second order partial derivatives

Definition 1. Let $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. If the j-th partial derivative of $\frac{\partial f}{\partial x_{i}}: \mathbb{R}^{N} \mapsto \mathbb{R}$ exists at $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$, then we call $\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right)$ a second order partial derivative for the function f at \boldsymbol{x}_{0}.

Remark 2. Clearly we can define second order partial derivatives for vector functions in a similar manner.

Notation. Usually we simply denote

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}}:=\frac{\partial}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{i}}\right) . \tag{1}
\end{equation*}
$$

When $j=i$, we write

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x_{j}^{2}}:=\frac{\partial}{\partial x_{i}}\left(\frac{\partial f}{\partial x_{i}}\right) \tag{2}
\end{equation*}
$$

Example 3. Let $f(x, y)=x \sin y$. Find $\frac{\partial^{2} f}{\partial x^{2}}, \frac{\partial^{2} f}{\partial x \partial y}, \frac{\partial^{2} f}{\partial y \partial x}, \frac{\partial^{2} f}{\partial y^{2}}$.
Solution. We have

$$
\begin{align*}
\frac{\partial^{2} f}{\partial x^{2}} & :=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}(x \sin y)\right) \\
& =\frac{\partial}{\partial x}(\sin y) \\
& =0 \tag{3}
\end{align*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x \partial y}=\cos y ; \quad \frac{\partial^{2} f}{\partial y \partial x}=\cos y ; \quad \frac{\partial^{2} f}{\partial y^{2}}=-x \sin y \tag{4}
\end{equation*}
$$

We observe that $\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y}$. However,

Example 4. Let

$$
f(x, y):=\left\{\begin{array}{ll}
x y \frac{x^{2}-y^{2}}{x^{2}+y^{2}} & (x, y) \neq(0,0) \tag{5}\\
0 & (x, y)=(0,0)
\end{array} .\right.
$$

We calculate $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$.

- $\frac{\partial^{2} f}{\partial x \partial y}$.

First calculate for $(x, y) \neq(0,0)$,

$$
\begin{equation*}
\frac{\partial f}{\partial y}=x\left[\frac{x^{2}-y^{2}}{x^{2}+y^{2}}-\frac{4 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] \tag{6}
\end{equation*}
$$

at $(0,0)$ since $f(0, y) \equiv 0$, we have $\frac{\partial f}{\partial y}(0,0)=0$. Thus

$$
\frac{\partial f}{\partial y}= \begin{cases}x\left[\frac{x^{2}-y^{2}}{x^{2}+y^{2}}-\frac{4 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] & (x, y) \neq(0,0) \tag{7}\\ 0 & (x, y)=(0,0)\end{cases}
$$

Now we calculate $\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)$ at $(x, y) \neq(0,0)$:

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x \partial y}=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}} \tag{8}
\end{equation*}
$$

At $(x, y)=(0,0)$, we have

$$
\begin{equation*}
\frac{\partial f}{\partial y}(x, 0)=x \Longrightarrow \frac{\partial^{2} f}{\partial x \partial y}(0,0)=1 \tag{9}
\end{equation*}
$$

- $\frac{\partial^{2} f}{\partial y \partial x}$. Similarly we have

$$
\frac{\partial f}{\partial x}= \begin{cases}y\left[\frac{x^{2}-y^{2}}{x^{2}+y^{2}}+\frac{4 x^{2} y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right] & (x, y) \neq(0,0) \tag{10}\\ 0 & (x, y)=(0,0)\end{cases}
$$

At $(x, y) \neq(0,0)$,

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y \partial x}=\frac{x^{6}+9 x^{4} y^{2}-9 x^{2} y^{4}-y^{6}}{\left(x^{2}+y^{2}\right)^{3}} \tag{11}
\end{equation*}
$$

At $(0,0)$,

$$
\begin{equation*}
\frac{\partial f}{\partial x}(0, y)=-y \Longrightarrow \frac{\partial^{2} f}{\partial y \partial x}(0,0)=-1 \tag{12}
\end{equation*}
$$

Observation.

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x} \tag{13}
\end{equation*}
$$

when $(x, y) \neq(0,0)$ but they differ at $(0,0)$.
Exercise 1. Prove that $\frac{\partial f}{\partial y}$ and $\frac{\partial f}{\partial x}$ are continuous functions.
Exercise 2. Prove that $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ are both continuous everywhere except at $(0,0)$.
Theorem 5. Let $f(x, y): \mathbb{R}^{2} \mapsto \mathbb{R}$. Assume that $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$ are both continuous at $\left(x_{0}, y_{0}\right)$, then

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right) \tag{14}
\end{equation*}
$$

Proof. Applying MVT twice to $A:=f(x, y)-f\left(x_{0}, y\right)-f\left(x, y_{0}\right)+f\left(x_{0}, y_{0}\right)$:
First let $\varphi(y):=f(x, y)-f\left(x_{0}, y\right)$. Then

$$
\begin{align*}
A & =\varphi(y)-\varphi\left(y_{0}\right) \\
& =\varphi^{\prime}(\eta)\left(y-y_{0}\right) \\
& =\left[\frac{\partial f}{\partial y}(x, \eta)-\frac{\partial f}{\partial y}\left(x_{0}, \eta\right)\right]\left(y-y_{0}\right) \\
& =\frac{\partial^{2} f}{\partial x \partial y}\left(\eta^{\prime}, \eta\right)\left(y-y_{0}\right)\left(x-x_{0}\right) \tag{15}
\end{align*}
$$

Similarly, letting $\psi(x):=f(x, y)-f\left(x, y_{0}\right)$ we have

$$
\begin{equation*}
A=\psi(x)-\psi\left(x_{0}\right)=\frac{\partial^{2} f}{\partial y \partial x}\left(\xi^{\prime}, \xi\right)\left(x-x_{0}\right)\left(y-y_{0}\right) \tag{16}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial x \partial y}\left(\eta^{\prime}, \eta\right)=\frac{\partial^{2} f}{\partial y \partial x}\left(\xi^{\prime}, \xi\right) \tag{17}
\end{equation*}
$$

Note that $\eta, \eta^{\prime}, \xi, \xi^{\prime}$ all depend on (x, y) but on the other hand satisfy

$$
\begin{equation*}
\left\|\left(\xi^{\prime}, \xi\right)-\left(x_{0}, y_{0}\right)\right\|,\left\|\left(\eta^{\prime}, \eta\right)-\left(x_{0}, y_{0}\right)\right\| \leqslant\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\| \tag{18}
\end{equation*}
$$

Letting $(x, y) \longrightarrow\left(x_{0}, y_{0}\right)$ and taking advatage of the continuity of $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial^{2} f}{\partial y \partial x}$, we reach the desired conclusion.

Exercise 3. What if we directly apply MVT twice to

$$
\begin{equation*}
A=\left[f(x, y)-f\left(x_{0}, y\right)\right]-\left[f\left(x, y_{0}\right)-f\left(x_{0}, y_{0}\right)\right] \tag{19}
\end{equation*}
$$

without introducing auxiliary functions such as $\varphi(y)$? Can we still prove the theorem?
Exercise 4. Prove that there is no $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ such that

$$
\begin{equation*}
\frac{\partial f}{\partial x}=y, \quad \frac{\partial f}{\partial y}=e^{x} \tag{20}
\end{equation*}
$$

for all $(x, y) \in \mathbb{R}^{2}$.

Problem 1. (PKUP) Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$. Assume that $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial^{2} f}{\partial x \partial y}$ are continuous at $\left(x_{0}, y_{0}\right)$, then

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y \partial x} \text { exists and is continuous at }\left(x_{0}, y_{0}\right), \text { and furthermore } \frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right) \tag{21}
\end{equation*}
$$

Problem 2. (PKUP) Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$. Assume $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ are differentiable at $\left(x_{0}, y_{0}\right)$. Then

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial y \partial x}\left(x_{0}, y_{0}\right)=\frac{\partial^{2} f}{\partial x \partial y}\left(x_{0}, y_{0}\right) \tag{22}
\end{equation*}
$$

Higher order partial derivatives

The definition is similar:

$$
\begin{equation*}
\frac{\partial^{n} f}{\partial x_{k_{n}} \partial x_{k_{n-1}} \cdots \partial x_{k_{1}}}:=\frac{\partial}{\partial x_{k_{n}}}\left(\frac{\partial^{n-1} f}{\partial x_{k_{n-1}} \cdots \partial x_{k_{1}}}\right) . \tag{23}
\end{equation*}
$$

Example 6. Let $f(x, y):=x^{3} y^{2}$, calculate $\frac{\partial^{3} f}{\partial x^{2} \partial y}, \frac{\partial^{3} f}{\partial x \partial y^{2}}$.
Solution. We have

$$
\begin{align*}
\frac{\partial^{3} f}{\partial x^{2} \partial y} & :=\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)\right) \\
& =\frac{\partial}{\partial x}\left(\frac{\partial}{\partial x}\left(2 x^{3} y\right)\right) \\
& =\frac{\partial}{\partial x}\left(6 x^{2} y\right) \\
& =12 x y \tag{24}
\end{align*}
$$

and similarly

$$
\begin{equation*}
\frac{\partial^{3} f}{\partial x \partial y^{2}}=6 x^{2} \tag{25}
\end{equation*}
$$

Exercise 5. (PKUP) Let $f(x, y)=x^{3} \sin y+y^{3} \sin x$. Find $\frac{\partial^{6} f}{\partial x^{3} \partial y^{3}}$.
Exercise 6. (PKUP) Let $f(x, y)=\sin \left(x^{2}+y^{2}\right)$. Find $\frac{\partial^{3} f}{\partial x^{2}}$.
Exercise 7. (PKUP) Let

$$
f(x, y):=\left\{\begin{array}{ll}
\exp \left[-1 /\left(x^{2}+y^{2}\right)\right] & x^{2}+y^{2} \neq 0 \tag{26}\\
0 & x^{2}+y^{2}=0
\end{array} .\right.
$$

Find $\frac{\partial^{2} f}{\partial x^{2}}(0,0), \frac{\partial^{2} f}{\partial x \partial y}(0,0)$.
Exercise 8. (PKUP) Prove that

$$
\begin{equation*}
u(x, t):=\frac{1}{2 a \sqrt{\pi t}} \exp \left[-\frac{(x-b)^{2}}{4 a^{2} t}\right] \tag{27}
\end{equation*}
$$

where $a, b \in \mathbb{R}$, satisfies

$$
\begin{equation*}
\frac{\partial u}{\partial t}=a^{2} \frac{\partial^{2} u}{\partial x^{2}} \tag{28}
\end{equation*}
$$

Exercise 9. (PKUP) Let $f(x, y):=\left(x-x_{0}\right)^{p}\left(y-y_{0}\right)^{q}$ with $p, q \in \mathbb{N} \cup\{0\}$. Find $\frac{\partial^{p+q} u}{\partial x^{p} \partial y^{q}}$.
Exercise 10. (PKUP) Let $f(x, y):=\frac{x+y}{x-y}$. Find $\frac{\partial^{m+n} f}{\partial x^{m} \partial y^{n}}$ where $m, n \in \mathbb{N} \cup\{0\}, x \neq y$.
Exercise 11. (PKUP) Let $f(x, y):=\ln (a x+b y)$. Find $\frac{\partial^{m+n} f}{\partial x^{m} \partial y^{n}}$.
Exercise 12. (PKUP) Let $f(x, y, z):=x y z e^{x+y+z}$. Find $\frac{\partial^{p+q+r} f}{\partial x^{p} \partial y^{y} \partial z^{r}}$ where $p, q, r \in \mathbb{N} \cup\{0\}$.

Problem 3. State and prove the theorem about order of taking derivatives for higher order partial derivatives of $f: \mathbb{R}^{N} \mapsto \mathbb{R}$.
Problem 4. Solve the equation (assume all second order partial derivatives of u are continuous.)

$$
\begin{equation*}
3 \frac{\partial^{2} u}{\partial x^{2}}-4 \frac{\partial^{2} u}{\partial x \partial y}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{29}
\end{equation*}
$$

through transforming it to $\frac{\partial^{2} u}{\partial \xi \partial \eta}=0$ via the change of variable $\xi=a x+b y, \eta=c x+d y$ for some appropriate constants a, b, c, d.

Problem 5. Prove that under the change of variables $x=r \cos \theta, y=r \sin \theta$, the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0 \tag{30}
\end{equation*}
$$

is transformed to

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 \tag{31}
\end{equation*}
$$

