
Applications

Representation of surfaces

Theorem 1. Let f :RN�R, x0∈R
N. Then f(x)= f(x0) is a surface in R

N. In particular, if grad f(x0)�
0, then the tangent plane at x0 is

(grad f)(x0) · (x−x0)=0. (1)

Proof. Since grad f(x0) � 0, there is at least one xi such that
(

∂f

∂xi

)

(x0)� 0. Thus we can apply implicit

function theorem and represent xi as a function of the other N − 1 variables. �

Example 2. Find the tangent planes for the sphere x2 + y2 + z2 = R2.

Solution. We check

grad f =





2 x

2 y

2 z



� 0
0
0



 (2)

whenever x2 + y2 + z2 = R2. We see that the equation is

x0 x+ y0 y + z0 z =R2. (3)

Theorem 3. Consider the curve defined through

f(x, y, z)= 0, g(x, y, z) =0. (4)

then the equation for the tangent line for the curve is

(grad f)(x0, y0, z0) ·





x− x0

y − y0

z − z0



 = 0 (5)

(grad g)(x0, y0, z0) ·





x− x0

y − y0

z − z0



 = 0. (6)

Proof. Exercise. �

Lagrange multiplier theory

Recall that when finding optimum of f : E ⊆R
N � R, since usually E is a closed set, we have to consider

the following two cases separately:

• Eo: In the interior we solve grad f = 0 to obtain candidates;

• ∂E: So far we have to calculate the values of f on ∂E explicitly.

Clearly this is not satisfactory.

We notice that in optimization problems, the boundary ∂E is usually given through conditions like

φ(x)> 0 (7)
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for some “constraint” function φ(x)7 



φ1(x)�
φK(x)



.

We will postpone the dealing of this general situation to a later section when we discuss the Karush-Kuhn-
Tucker (KKT) conditions. Here we consider the following problem

max
φ(x)

f(x) (8)

which in optimization literature is usually written as

max f(x) subject to φ(x)= 0. (9)

Here φ:RN� R is a scalar function. φ(x)=0 is called a “constraint” of the problem.

Theorem 4. (Lagrange multiplier) Let ∅� U ⊆R
N be open, let f , φ∈C1, and let x0∈U be such that f

has a local maximum or minimum, at x0 under the constraint φ(x)=0 and such that ∇φ(x0)� 0. then there

is Lagrange multiplier.

Proof. As grad φ� 0, we can apply the Implicit function theorem. Wlog, assume

xN = X(x1,	 , xN−1). (10)

Now (x01,	 , x0N−1) is a local maximizer/minimizer of the following function

F (x1,	 , xN−1)7 f(x1,	 , xN−1, X(x1,	 , xN−1)). (11)

Now applying the necessary condition we have

∂f

∂xi
+

∂f

∂xN

∂X

∂xi
= 0 (12)

for all i= 1, 2,	 , N − 1. Since we have

φ(x1,	 , xN−1, X)= 0 (13)

we obtain

∂φ

∂xi
+

∂φ

∂xN

∂X

∂xi
=0. (14)

Recall that
∂φ

∂xN

� 0 so we can solve
∂X

∂xi

and substitute into the f equation to obtain

∂f

∂xi
=

[(

∂φ

∂xN

)

−1 ∂f

∂xN

]

∂φ

∂xi
. (15)

If we denote

λ7 (

∂φ

∂xN

)

−1 ∂f

∂xN

(16)

we conclude that

grad f = λ grad φ. (17)

Thus ends the proof. �
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Remark 5. Often a “Lagrange function” is defined:

L(λ, x)7 f(x)−λφ(x). (18)

The necessary condition is now stated as gradλ,xL= 0.

Exercise 1. Prove that gradλ,xL =0 is a necessary condition for x0 to be a local maximizer/minimizer.

Example 6. Find maximum/minimum of

f(x, y)= x y (19)

on (x− 1)2 + y2 = 1.

Solution. We write the Lagrange function

L(λ, x, y)= x y −λ [(x− 1)2 + y2− 1]. (20)

Now we have

0 =
∂L

∂x
= y − 2 (x− 1)λ; (21)

0 =
∂L

∂y
= x− 2 y λ; (22)

0 =
∂L

∂λ
= (x− 1)2 + y2− 1. (23)

From the first two equations we can cancel λ and obtain

y2 = x (x− 1). (24)

Substituting into the 3rd equation, we get

(x− 1)2 + x (x− 1)− 1= 0� 2 x2− 3 x= 0 (25)

and then

x= 0, x =
3

2
. (26)

Correspondingly we have

y = 0, ± 3
√

2
. (27)

Thus we have three candidates:
(

0
0

)

,

(

3/2

3
√

/2

)

,

(

3/2

− 3
√

/2

)

.

Now calculate

f(0, 0) = 0, (28)

f

(

3

2
,

3
√

2

)

=
3 3
√

4
, (29)

f

(

3

2
,− 3

√

2

)

= −3 3
√

4
. (30)
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We see that
(

3/2

3
√

/2

)

is the maximizer, and
(

3/2

− 3
√

/2

)

is the minimizer.

Example 7. Find maximum of x1
 xn satisfying x1 +
 + xn = 1, x1,	 , xn > 0.

Solution. Here we have the difficulty of n inequality constraints: x1 > 0,	 , xn > 0. We will discuss general
theory of optimization problems with inequality constraints in a future lecture. On the other hand, for this
particular problem we claim that simply solving

maxx1
xn subject to x1 +
 + xn = 1 (31)

is enough.

Let E 7 {xO x1 + 
 + xn = 1, x1, 	 , xn > 0}. We see that this is a bounded closed set and therefore the
continuous function x1
xn must reach its maximum in E. It is easy to see that at the maximum, it must
be x1 > 0,	 , xn > 0, which means the maximizer at least corresponds to a local maximizer for the problem

maxx1
xn subject to x1 +
 + xn = 1 (32)

Define the Lagrange function

L(λ, x1,	 , xn)7 x1
xn −λ (x1 +
 +xn − 1). (33)

Taking partial derivatives we have

0 =
∂L

∂x1
= x2
xn −λ, (34)� � �

0 =
∂L

∂xn
= x1
xn−1−λ, (35)

0 =
∂L

∂λ
= x1 +
 + xn − 1. (36)

From the first n equations we conclude

x1
xn

xi

= λ (37)

for all i = 1, 2,	 , n which gives x1 =
 = xn.1 Now activating the last equation x1 + 
 + xn − 1 = 0 we see

that the only candidate for maximizer is





1/n�
1/n



 with f(x1,	 , xn)= 1/nn. Since it is the only candidate, it

has to be the maximizer, and the maximum is 1/nn.

Problem 1. Develop the Lagrange multiplier theory for multiple constraints: φ1(x) =
 = φK(x)= 0.

1. The other possibility is that one of xi is 0. But then we know it cannot be the maximizer.
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