
General implicit and inverse function theorems

Theorem 1. (Implicit function theorem) Let f :RN� RM with N > M. We decompose

RN =RN−M ×RM (1)

and denote the first N −M coordinates by vector x and the rest M coordinates by y.

Assume

i. f is differentiable and has continuous partial derivatives;

ii. f(x0, y0)= 0.

iii. det
(

∂f

∂y

)

(x0, y0)� 0 where the Jacobian matrix with respect to y is defined as

(

∂f

∂y

)7


∂f1

∂y1


 ∂f1

∂yM� 
 �
∂fM

∂y1


 ∂fM

∂yM









. (2)

Then there are open sets U ⊆R
N−M , V ⊆R

M satisfying x0∈U , y0∈ V and

i. For every x∈U the equation f(x, y)= 0 has one unique solution y =Y (x)∈ V;

ii. Y (x0)= y0;

iii. Y is differentiable with continuous partial derivatives;

iv. For x∈U,

(

∂Y

∂x

)

=−

(

∂f

∂y

)

−1
(

∂f

∂x

)

=









∂f1

∂y1


 ∂f1

∂yM� 
 �
∂fM

∂y1


 ∂fM

∂yM









−1








∂f1

∂x1


 ∂f1

∂xN−M� 
 �
∂fM

∂x1


 ∂fM

∂xN−M









. (3)

Proof. The proof follows exactly the same idea as the R2 case. We only emphsize the difference here. Denote

A7 (

∂f

∂y

)

(x0, y0). (4)

To make the presentation easier we pre-process as follows. Set F (x, y)7 A−1 f (x, y). Then it is easy to

verify that it suffices to work with F and furthermore
(

∂F

∂y

)

(x0, y0)= I the identity matrix. We choose δ1,

δ2 small to satisfy the following:

1. δ2 small enough so that

∂fi

∂yj
<

1

2M2
,

∣

∣

∣

∣

1−
∂fi

∂yi

∣

∣

∣

∣

<
1

2M2
(5)

for all ‖(x, y)− (x0, y0)‖< 2 δ2.

2. Fix the above δ2. Now we choose δ1 6 δ2 such that for all x∈B(x0, δ1), ‖F (x, y0)‖<
1

2
.
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Now we first try to show the existence of a unique y solving

F (x, y) =0 (6)

for all x∈B(x0, δ1). Fix x. Denote

g(y)7 F (x, y). (7)

We still use the iteration

yn = yn−1− g(yn−1). (8)

Now we have

yn − yn−1 = yn−1− yn−2− [g(yn−1)− g(yn−2)]. (9)

Note that the difference now is that we do not have one single ξ such that

g(yn−1)− g(yn−2)=

(

∂g

∂y

)

(ξ) (yn−1− yn−2). (10)

However we still have the following mean value theorem:

gi(yn−1)− gi(yn−2)= (grad g)(ξ) · (yn−1− yn−2). (11)

This way we still could prove that {yn} is Cauchy. �

Exercise 1. Complete the proof of the theorem.

Example 2. Consider the system

x1 y2− 4 x2 + 2 ey1 + 3 = 0 (12)

2x1−x3− 6 y1 + y2 cos y1 = 0 (13)

Calculate the Jacobian of the implicit function Y (x) at x1 =−1, x2 = 1, x3 =−1, y1 = 0, y2 =1.

Solution. Let

F (x, y)7 (

x1 y2− 4x2 + 2 ey1 + 3
2 x1−x3− 6 y1 + y2 cos y1

)

. (14)

Then we have
(

∂F

∂x

)

=

(

y2 −4 0
2 0 −1

)

,

(

∂F

∂y

)

=

(

2 ey1 x1

−6− y2 sin y1 cos y1

)

. (15)

At the specified point we have

(

∂F

∂x

)

=

(

1 −4 0
2 0 −1

)

,

(

∂F

∂y

)

=

(

2 −1
−6 1

)

. (16)

We see that
(

∂Y

∂x

)

=
1

4

(

3 −4 −1
10 −24 −2

)

. (17)
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Example 3. Let z = f(x, y), g(x, y) =0. Calculate
dz

dx
.

Solution. Let

F (x, y, z) =

(

f(x, y)− z

g(x, y)

)

. (18)

Then we have

(

∂F

∂x

)

=





∂f

∂x
∂g

∂x



,

(

∂F

∂(y, z)

)

=





∂f

∂y
−1

∂g

∂y
0



 (19)

which gives

∂(Y , Z)

∂x
=−





∂f

∂y
−1

∂g

∂y
0





−1




∂f

∂x
∂g

∂x



=−
1
∂g

∂y

(

0 1

−
∂g

∂y

∂f

∂y

)





∂f

∂x
∂g

∂x



. (20)

Finally we have

dZ

dx
=

1
∂g

∂y

det
∂(f , g)

∂(x, y)
. (21)

Theorem 4. (Inverse function theorem) Let f :RN� R
N satisfy

i. f is differentiable with continuous partial derivatives;

ii. f(y0)= x0;

iii. det
(

∂f

∂y

)

(y0)� 0.

Then there are two open sets U , V such that x0 ∈ U , y0 ∈ V and there is a function g: U � V which is the

inverse of f. Furthermore we have

(

∂g

∂x

)

(x0, y0)=
[(

∂f

∂y

)

(x0, y0)
]

−1

. (22)

Proof. Most of the theorem follow directly from implicit function theorem, from which we obtain the
existence of I , J , g such that

f(g(x))= x (23)

for all x∈ I, with g(x) unique and belong to J .

Notice that to show g is the inverse, we need to further check the following: There is V ⊆J open such that
f is one-to-one on V . (Think: Why do we need this?)

We take V = f−1(U)∩ J . Since f is continuous, f−1(U) is open and thus V is open.

Now we check one-to-one. Assume that f (y1)= f(y2). Then we know there are ξ1,	 , ξN such that

(grad fi)(ξi) · (y1− y2) =0. (24)

If we set

A7 (grad f1)(ξ1)T�
(grad fN)(ξN)T





, (25)
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we would have

A (y1− y2)= 0. (26)

But by our choice of U , detA� 0. Consequently y1− y2 = 0� y1 = y2. �

Exercise 2. Let A, B be sets. f :A� B a function. If there is g: B� A such that

f(g(y))= y (27)

for all y ∈B, can we say g is an inverse of f? What if we further assume f is one-to-one?

Exercise 3. (Polar coordinates) Let x = r cos θ, y = r sinθ. Calculate
(

∂(r, θ)

∂(x, y)

)

.

Exercise 4. Let x= r cosθ, y = r sinθ.

a) Show that det
(

∂(x, y)

∂(r, θ)

)� 0 for all r > 0.

b) Does the inverse function exist globally?

Problem 1. Let f : RN � R
N be differentiable with continuous partial derivatives. Assume that det Jf(x0) � 0. Then

there is r > 0 such that for any open set U ⊆B(x0, r), f(U) is open.
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