General implicit and inverse function theorems

Theorem 1. (Implicit function theorem) Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ with $N>M$. We decompose

$$
\begin{equation*}
\mathbb{R}^{N}=\mathbb{R}^{N-M} \times \mathbb{R}^{M} \tag{1}
\end{equation*}
$$

and denote the first $N-M$ coordinates by vector \boldsymbol{x} and the rest M coordinates by \boldsymbol{y}.
Assume
i. \boldsymbol{f} is differentiable and has continuous partial derivatives;
ii. $\boldsymbol{f}\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=\mathbf{0}$.
iii. $\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}}\right)\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \neq 0$ where the Jacobian matrix with respect to \boldsymbol{y} is defined as

$$
\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}}\right):=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}} & \cdots & \frac{\partial f_{1}}{\partial y_{M}} \tag{2}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_{M}}{\partial y_{1}} & \cdots & \frac{\partial f_{M}}{\partial y_{M}}
\end{array}\right)
$$

Then there are open sets $U \subseteq \mathbb{R}^{N-M}, V \subseteq \mathbb{R}^{M}$ satisfying $\boldsymbol{x}_{0} \in U, \boldsymbol{y}_{0} \in V$ and
i. For every $\boldsymbol{x} \in U$ the equation $\boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0}$ has one unique solution $\boldsymbol{y}=\boldsymbol{Y}(\boldsymbol{x}) \in V$;
ii. $\boldsymbol{Y}\left(\boldsymbol{x}_{0}\right)=\boldsymbol{y}_{0}$;
iii. \boldsymbol{Y} is differentiable with continuous partial derivatives;
iv. For $\boldsymbol{x} \in U$,

$$
\left(\frac{\partial \boldsymbol{Y}}{\partial \boldsymbol{x}}\right)=-\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}}\right)^{-1}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)=\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial y_{1}} & \cdots & \frac{\partial f_{1}}{\partial y_{M}} \tag{3}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_{M}}{\partial y_{1}} & \cdots & \frac{\partial f_{M}}{\partial y_{M}}
\end{array}\right)^{-1}\left(\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{N-M}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_{M}}{\partial x_{1}} & \cdots & \frac{\partial f_{M}}{\partial x_{N-M}}
\end{array}\right)
$$

Proof. The proof follows exactly the same idea as the \mathbb{R}^{2} case. We only emphsize the difference here. Denote

$$
\begin{equation*}
A:=\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}}\right)\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right) \tag{4}
\end{equation*}
$$

To make the presentation easier we pre-process as follows. Set $\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}):=A^{-1} \boldsymbol{f}(\boldsymbol{x}, \boldsymbol{y})$. Then it is easy to verify that it suffices to work with \boldsymbol{F} and furthermore $\left(\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{y}}\right)\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=I$ the identity matrix. We choose δ_{1}, δ_{2} small to satisfy the following:

1. δ_{2} small enough so that

$$
\begin{equation*}
\frac{\partial f_{i}}{\partial y_{j}}<\frac{1}{2 M^{2}}, \quad\left|1-\frac{\partial f_{i}}{\partial y_{i}}\right|<\frac{1}{2 M^{2}} \tag{5}
\end{equation*}
$$

for all $\left\|(\boldsymbol{x}, \boldsymbol{y})-\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right\|<2 \delta_{2}$.
2. Fix the above δ_{2}. Now we choose $\delta_{1} \leqslant \delta_{2}$ such that for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta_{1}\right),\left\|\boldsymbol{F}\left(\boldsymbol{x}, \boldsymbol{y}_{0}\right)\right\|<\frac{1}{2}$.

Now we first try to show the existence of a unique \boldsymbol{y} solving

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y})=\mathbf{0} \tag{6}
\end{equation*}
$$

for all $\boldsymbol{x} \in B\left(\boldsymbol{x}_{0}, \delta_{1}\right)$. Fix \boldsymbol{x}. Denote

$$
\begin{equation*}
\boldsymbol{g}(\boldsymbol{y}):=\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}) \tag{7}
\end{equation*}
$$

We still use the iteration

$$
\begin{equation*}
\boldsymbol{y}_{n}=\boldsymbol{y}_{n-1}-\boldsymbol{g}\left(\boldsymbol{y}_{n-1}\right) . \tag{8}
\end{equation*}
$$

Now we have

$$
\begin{equation*}
\boldsymbol{y}_{n}-\boldsymbol{y}_{n-1}=\boldsymbol{y}_{n-1}-\boldsymbol{y}_{n-2}-\left[\boldsymbol{g}\left(\boldsymbol{y}_{n-1}\right)-\boldsymbol{g}\left(\boldsymbol{y}_{n-2}\right)\right] . \tag{9}
\end{equation*}
$$

Note that the difference now is that we do not have one single $\boldsymbol{\xi}$ such that

$$
\begin{equation*}
\boldsymbol{g}\left(\boldsymbol{y}_{n-1}\right)-\boldsymbol{g}\left(\boldsymbol{y}_{n-2}\right)=\left(\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{y}}\right)(\boldsymbol{\xi})\left(\boldsymbol{y}_{n-1}-\boldsymbol{y}_{n-2}\right) \tag{10}
\end{equation*}
$$

However we still have the following mean value theorem:

$$
\begin{equation*}
g_{i}\left(\boldsymbol{y}_{n-1}\right)-g_{i}\left(\boldsymbol{y}_{n-2}\right)=(\operatorname{grad} g)(\boldsymbol{\xi}) \cdot\left(\boldsymbol{y}_{n-1}-\boldsymbol{y}_{n-2}\right) . \tag{11}
\end{equation*}
$$

This way we still could prove that $\left\{\boldsymbol{y}_{n}\right\}$ is Cauchy.

Exercise 1. Complete the proof of the theorem.

Example 2. Consider the system

$$
\begin{array}{r}
x_{1} y_{2}-4 x_{2}+2 e^{y_{1}}+3=0 \\
2 x_{1}-x_{3}-6 y_{1}+y_{2} \cos y_{1}=0 \tag{13}
\end{array}
$$

Calculate the Jacobian of the implicit function $\boldsymbol{Y}(\boldsymbol{x})$ at $x_{1}=-1, x_{2}=1, x_{3}=-1, y_{1}=0, y_{2}=1$.
Solution. Let

$$
\begin{equation*}
\boldsymbol{F}(\boldsymbol{x}, \boldsymbol{y}):=\binom{x_{1} y_{2}-4 x_{2}+2 e^{y_{1}}+3}{2 x_{1}-x_{3}-6 y_{1}+y_{2} \cos y_{1}} \tag{14}
\end{equation*}
$$

Then we have

$$
\left(\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}\right)=\left(\begin{array}{ccc}
y_{2} & -4 & 0 \tag{15}\\
2 & 0 & -1
\end{array}\right), \quad\left(\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{y}}\right)=\left(\begin{array}{cc}
2 e^{y_{1}} & x_{1} \\
-6-y_{2} \sin y_{1} & \cos y_{1}
\end{array}\right)
$$

At the specified point we have

$$
\left(\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{x}}\right)=\left(\begin{array}{ccc}
1 & -4 & 0 \tag{16}\\
2 & 0 & -1
\end{array}\right), \quad\left(\frac{\partial \boldsymbol{F}}{\partial \boldsymbol{y}}\right)=\left(\begin{array}{cc}
2 & -1 \\
-6 & 1
\end{array}\right) .
$$

We see that

$$
\left(\frac{\partial \boldsymbol{Y}}{\partial \boldsymbol{x}}\right)=\frac{1}{4}\left(\begin{array}{ccc}
3 & -4 & -1 \tag{17}\\
10 & -24 & -2
\end{array}\right)
$$

Example 3. Let $z=f(x, y), g(x, y)=0$. Calculate $\frac{\mathrm{d} z}{\mathrm{~d} x}$.
Solution. Let

$$
\begin{equation*}
\boldsymbol{F}(x, y, z)=\binom{f(x, y)-z}{g(x, y)} \tag{18}
\end{equation*}
$$

Then we have

$$
\left(\begin{array}{c}
\frac{\partial \boldsymbol{F}}{\partial x}
\end{array}\right)=\binom{\frac{\partial f}{\partial x}}{\frac{\partial g}{\partial x}}, \quad\left(\frac{\partial \boldsymbol{F}}{\partial(y, z)}\right)=\left(\begin{array}{cc}
\frac{\partial f}{\partial y} & -1 \tag{19}\\
\frac{\partial g}{\partial y} & 0
\end{array}\right)
$$

which gives

$$
\frac{\partial(Y, Z)}{\partial x}=-\left(\begin{array}{cc}
\frac{\partial f}{\partial y} & -1 \tag{20}\\
\frac{\partial g}{\partial y} & 0
\end{array}\right)^{-1}\binom{\frac{\partial f}{\partial x}}{\frac{\partial g}{\partial x}}=-\frac{1}{\frac{\partial g}{\partial y}}\left(\begin{array}{cc}
0 & 1 \\
-\frac{\partial g}{\partial y} & \frac{\partial f}{\partial y}
\end{array}\right)\binom{\frac{\partial f}{\partial x}}{\frac{\partial g}{\partial x}}
$$

Finally we have

$$
\begin{equation*}
\frac{\mathrm{d} Z}{\mathrm{~d} x}=\frac{1}{\frac{\partial g}{\partial y}} \operatorname{det} \frac{\partial(f, g)}{\partial(x, y)} \tag{21}
\end{equation*}
$$

Theorem 4. (Inverse function theorem) Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}$ satisfy
i. \boldsymbol{f} is differentiable with continuous partial derivatives;
ii. $\boldsymbol{f}\left(\boldsymbol{y}_{0}\right)=\boldsymbol{x}_{0}$;
iii. $\operatorname{det}\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}}\right)\left(\boldsymbol{y}_{0}\right) \neq 0$.

Then there are two open sets U, V such that $\boldsymbol{x}_{0} \in U, \boldsymbol{y}_{0} \in V$ and there is a function $\boldsymbol{g}: U \mapsto V$ which is the inverse of \boldsymbol{f}. Furthermore we have

$$
\begin{equation*}
\left(\frac{\partial \boldsymbol{g}}{\partial \boldsymbol{x}}\right)\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)=\left[\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{y}}\right)\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)\right]^{-1} \tag{22}
\end{equation*}
$$

Proof. Most of the theorem follow directly from implicit function theorem, from which we obtain the existence of I, J, \boldsymbol{g} such that

$$
\begin{equation*}
\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))=\boldsymbol{x} \tag{23}
\end{equation*}
$$

for all $\boldsymbol{x} \in I$, with $\boldsymbol{g}(\boldsymbol{x})$ unique and belong to J.
Notice that to show \boldsymbol{g} is the inverse, we need to further check the following: There is $V \subseteq J$ open such that f is one-to-one on V. (Think: Why do we need this?)
We take $V=\boldsymbol{f}^{-1}(U) \cap J$. Since \boldsymbol{f} is continuous, $\boldsymbol{f}^{-1}(U)$ is open and thus V is open.
Now we check one-to-one. Assume that $\boldsymbol{f}\left(\boldsymbol{y}_{1}\right)=\boldsymbol{f}\left(\boldsymbol{y}_{2}\right)$. Then we know there are $\boldsymbol{\xi}_{\mathbf{1}}, \ldots, \boldsymbol{\xi}_{\boldsymbol{N}}$ such that

$$
\begin{equation*}
\left(\operatorname{grad} f_{i}\right)\left(\boldsymbol{\xi}_{i}\right) \cdot\left(\boldsymbol{y}_{1}-\boldsymbol{y}_{2}\right)=0 \tag{24}
\end{equation*}
$$

If we set

$$
A:=\left(\begin{array}{c}
\left(\operatorname{grad} f_{1}\right)\left(\boldsymbol{\xi}_{1}\right)^{T} \tag{25}\\
\vdots \\
\left(\operatorname{grad} f_{N}\right)\left(\boldsymbol{\xi}_{N}\right)^{T}
\end{array}\right)
$$

we would have

$$
\begin{equation*}
A\left(\boldsymbol{y}_{1}-\boldsymbol{y}_{2}\right)=0 \tag{26}
\end{equation*}
$$

But by our choice of U, $\operatorname{det} A \neq 0$. Consequently $\boldsymbol{y}_{1}-\boldsymbol{y}_{2}=0 \Longrightarrow \boldsymbol{y}_{1}=\boldsymbol{y}_{2}$.

Exercise 2. Let A, B be sets. $f: A \mapsto B$ a function. If there is $g: B \mapsto A$ such that

$$
\begin{equation*}
f(g(y))=y \tag{27}
\end{equation*}
$$

for all $y \in B$, can we say g is an inverse of f ? What if we further assume f is one-to-one?
Exercise 3. (Polar coordinates) Let $x=r \cos \theta, y=r \sin \theta$. Calculate $\left(\frac{\partial(r, \theta)}{\partial(x, y)}\right)$.
Exercise 4. Let $x=r \cos \theta, y=r \sin \theta$.
a) Show that $\operatorname{det}\left(\frac{\partial(x, y)}{\partial(r, \theta)}\right) \neq 0$ for all $r>0$.
b) Does the inverse function exist globally?

Problem 1. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{N}$ be differentiable with continuous partial derivatives. Assume that det $J_{f}\left(\boldsymbol{x}_{0}\right) \neq 0$. Then there is $r>0$ such that for any open set $U \subseteq B\left(\boldsymbol{x}_{0}, r\right), \boldsymbol{f}(U)$ is open.

