
Implicit function theorem in R
2

We now consider the equation

f(x, y) =0 (1)

where f :R2� R and try to solve it near (x0, y0).

Theorem 1. (Implicit function theorem in R2) Let f :R2� R satisfy

i. f(x, y) is partially differentiable with continuous partial derivatives;

ii. f(x0, y0)= 0;

iii.
∂f

∂y
(x0, y0)� 0.

Then there is an open interval I × J such that (x0, y0)∈ I × J and

i. For every x∈ I there is a unique y∈J such that f(x, y)=0. Thus we can define the implicit function

Y (x)7 y.

ii. Y (x0)= y0;

iii. Y is differentiable with continuous derivatives;

iv. For x∈ I,

Y ′(x) =−

(

∂f

∂x
(x, Y (x))

)

/

(

∂f

∂y
(x, Y (x))

)

. (2)

Proof. To simplify presentation, let a7 ∂f

∂y
(x0, y0). We choose I × J 7 (x0− δ1, x0 + δ1)× (y0− δ2, y0 + δ2)

with δ1, δ2 satisfying the following.

1. δ2 small enough so that
∂f

∂y
(x, y)∈

( a

2
,

3 a

2

)

for all ‖(x, y)− (x0, y0)‖< 2 δ2. This is possible as a� 0,

and
∂f

∂y
is continuous.

2. For the above δ2, we further choose δ1 6 δ2 such that for all x∈ (x0− δ1, x0 + δ1),
∣

∣

∣

2 f(x, y0)

a

∣

∣

∣
<δ2.

Combining these two, we see that for all (x, y)∈ I × J ,

∂f

∂y
(x, y)∈

(

a

2
,
3 a

2

)

and

∣

∣

∣

∣

2 f(x, y0)

a

∣

∣

∣

∣

< δ2 (3)

• First we try to define the function Y for x∈I. That is for each x, we try to find y solving g(y)=0 where

g(y)7 F (x, y). (4)

Start from y0, we define for every n > 1,

yn = yn−1−
g(yn−1)

a
. (5)
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We prove the following:

For all n > 1, |yn − y0|<δ2, and |yn+1− yn|6
|yn − yn−1|

2
.

We prove through induction.

◦ Base step. We have

y1 = y0−
g(y0)

a
� |y1− y0|=

|f(x, y0)|

a
<

δ2

2
(6)

Now consider

y2 = y1−
g(y1)

a
(7)

and we have

y2− y1 = y1− y0−
g(y1)− g(y0)

a
=

(

1−
g ′(ξ)

a

)

(y1− y0) (8)

for some ξ ∈ (y0, y1).

Since both y1, y0∈J , we have g ′(ξ)∈
( a

2
,

3 a

2

)

and consequently

|y2− y1|<
|y1− y0|

2
. (9)

◦ Induction step. Assume the claim holds for all n = 1, 	 , k − 1. Now consider the case n = k.
First by induction assumption

|yk − yk−1|6
|yk−1− yk−2|

2
6

|yk−2− yk−3|

22
6
 6

|y1− y0|

2k−1
, (10)

We have

|yk − y0|< 2 |y1− y0|< δ2. (11)

In particular, yk, yk−1∈ J .

Now we have

(yk+1− yk) = (yk − yk−1)−
g(yk)− g(yk−1)

a

=

(

1−
g ′(ξ)

a

)

(yk − yk−1). (12)

Since yk, yk−1∈J , we have ξ ∈J . By our choice of I and J , we have g ′(ξ)=
∂F (x, ξ)

∂y
∈

( a

2
,

3 a

2

)

which gives

|yk+1− yk|6
|yk − yk−1|

2
. (13)

Now we can conclude that {yn} is a Cauchy sequence and therefore converges: limn�∞yn = y ∈ J .
Now taking limit n� ∞ in both sides of (5) we have

y = y −
g(y)

a
� g(y)= 0 that is F (x, y) =0. (14)
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Note that here we have used the continuity of g(y) which is a consequence of the continuity of f(x, y)
which is in turn a consequence of the differentiability of f which in turn follows from the assumption
that f ’s partial derivatives are continuous.

• Step 2. We prove that y is unique in J . That is, if f(x, y1)= f(x, y2)=0 for y1, y2∈J , then y1 = y2.
For such y1, y2 we would have some ξ ∈ (y1, y2) such that

0= f(x, y1)− f(x, y2)=
∂f(x, ξ)

∂y
(y1− y2). (15)

Now we know that for all (x, y)∈ I ×J ,
∂f(x, y)

∂y
∈

( a

2
,
3 a

2

)

for some a� 0. Therefore
∂f(x, ξ)

∂y
� 0 which

means y1− y2 = 0.

• Step 3. We prove differentiability of Y and calculate the differential. Since

F (x, Y (x))= 0 (16)

we have

F (x + δx, Y (x + δx))= 0. (17)

By mean value theorem we have

F (x + δx, Y (x + δx))−F (x, Y (x + δx))+ F (x, Y (x + δx))−F (x, y) =0 (18)

which gives

∂F

∂x
(ξ) δx +

∂F

∂y
(ξ) (Y (x+ δx)−Y (x))= 0 (19)

which gives

Y (x + δx)−Y (x)

δx
=−

Fx

Fy
. (20)

This proves differentiability together with the continuity of the derivative. �

Problem 1. The above proof still works for f :RN� R. Figure out the details.

Theorem 2. (Inverse function theorem) Let f :R� R be differentiable with continuous derivative. Let

y0∈R and set x0 = f(y0). Then if f ′(y0)� 0, there are intervals I ∋x0, J ∋ y0 such that there is a function

g satisfying f(g(x))= x fo all x∈J.

Exercise 1. Prove the above theorem.

Example 3. Let y = Y (x) be defined through Y (1) =1 and

x2 y2− 3 y + 2x3 = 0. (21)

Find Y ′(1).

Solution. First check

∂(x2 y2− 3 y + 2x3)

∂y
(1, 1)= (2 x2 y − 3)O x=1,y=1 =−1� 0 (22)
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So the implicit function exists. Now taking
d

dx
to

x2 Y (x)2− 3 Y (x)+ 2x3 = 0 (23)

we have

2x Y (x)2 + 2x2 Y (x)Y ′(x)− 3Y ′(x) +6 x2 =0. (24)

Setting x= 1 we have

2+ 2 Y ′(1)− 3Y ′(1)+ 6= 0� Y ′(1) =8. (25)

Remark 4. As can be seen in the above example, often it is simpler to use chain rule instead of trying to

remember the formula Y ′(x)=−
(

∂f

∂x
(x, Y (x))

)

/
(

∂f

∂y
(x, Y (x))

)

.

Example 5. Let z =Z(x, y) be defined through

sin z − x y z = 0. (26)

Find
∂Z

∂x
,

∂Z

∂y
.

Solution. First we check

∂(sin z −x y z)

∂z
= cos z −x y. (27)

So the theorem can be applied at points where cos z − x y � 0. Then we can easily obtain

∂z

∂x
=

y z

cos z − x y
,

∂z

∂y
=

x z

cos z − x y
. (28)

Exercise 2. Let F be continuously differentiable. Consider F (x, y, z)= 0. Prove
∂x

∂y

∂y

∂z

∂z

∂x
=−1.
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