Implicit function theorem in \mathbb{R}^2

We now consider the equation

$$f(x,y) = 0 \tag{1}$$

where $f: \mathbb{R}^2 \to \mathbb{R}$ and try to solve it near (x_0, y_0) .

Theorem 1. (Implicit function theorem in \mathbb{R}^2) Let $f: \mathbb{R}^2 \mapsto \mathbb{R}$ satisfy

- i. f(x, y) is partially differentiable with continuous partial derivatives;
- *ii.* $f(x_0, y_0) = 0$;
- *iii.* $\frac{\partial f}{\partial y}(x_0, y_0) \neq 0.$

Then there is an open interval $I \times J$ such that $(x_0, y_0) \in I \times J$ and

- *i.* For every $x \in I$ there is a unique $y \in J$ such that f(x, y) = 0. Thus we can define the implicit function Y(x) := y.
- *ii.* $Y(x_0) = y_0$;
- iii. Y is differentiable with continuous derivatives;
- iv. For $x \in I$,

$$Y'(x) = -\left(\frac{\partial f}{\partial x}(x, Y(x))\right) / \left(\frac{\partial f}{\partial y}(x, Y(x))\right).$$
(2)

Proof. To simplify presentation, let $a := \frac{\partial f}{\partial y}(x_0, y_0)$. We choose $I \times J := (x_0 - \delta_1, x_0 + \delta_1) \times (y_0 - \delta_2, y_0 + \delta_2)$ with δ_1, δ_2 satisfying the following.

- 1. δ_2 small enough so that $\frac{\partial f}{\partial y}(x, y) \in \left(\frac{a}{2}, \frac{3a}{2}\right)$ for all $||(x, y) (x_0, y_0)|| < 2\delta_2$. This is possible as $a \neq 0$, and $\frac{\partial f}{\partial y}$ is continuous.
- 2. For the above δ_2 , we further choose $\delta_1 \leq \delta_2$ such that for all $x \in (x_0 \delta_1, x_0 + \delta_1), \left|\frac{2 f(x, y_0)}{a}\right| < \delta_2$.

Combining these two, we see that for all $(x, y) \in I \times J$,

$$\frac{\partial f}{\partial y}(x,y) \in \left(\frac{a}{2}, \frac{3a}{2}\right) \text{ and } \left|\frac{2f(x,y_0)}{a}\right| < \delta_2 \tag{3}$$

• First we try to define the function Y for $x \in I$. That is for each x, we try to find y solving g(y) = 0 where

$$g(y) := F(x, y). \tag{4}$$

Start from y_0 , we define for every $n \ge 1$,

$$y_n = y_{n-1} - \frac{g(y_{n-1})}{a}.$$
 (5)

We prove the following:

For all
$$n \ge 1$$
, $|y_n - y_0| < \delta_2$, and $|y_{n+1} - y_n| \le \frac{|y_n - y_{n-1}|}{2}$.

We prove through induction.

 \circ Base step. We have

$$y_1 = y_0 - \frac{g(y_0)}{a} \Longrightarrow |y_1 - y_0| = \frac{|f(x, y_0)|}{a} < \frac{\delta_2}{2}$$
 (6)

Now consider

$$y_2 = y_1 - \frac{g(y_1)}{a} \tag{7}$$

and we have

$$y_2 - y_1 = y_1 - y_0 - \frac{g(y_1) - g(y_0)}{a} = \left(1 - \frac{g'(\xi)}{a}\right)(y_1 - y_0) \tag{8}$$

for some $\xi \in (y_0, y_1)$.

Since both $y_1, y_0 \in J$, we have $g'(\xi) \in \left(\frac{a}{2}, \frac{3a}{2}\right)$ and consequently

$$|y_2 - y_1| < \frac{|y_1 - y_0|}{2}.$$
(9)

• Induction step. Assume the claim holds for all n = 1, ..., k - 1. Now consider the case n = k. First by induction assumption

$$|y_k - y_{k-1}| \leqslant \frac{|y_{k-1} - y_{k-2}|}{2} \leqslant \frac{|y_{k-2} - y_{k-3}|}{2^2} \leqslant \dots \leqslant \frac{|y_1 - y_0|}{2^{k-1}},\tag{10}$$

We have

$$|y_k - y_0| < 2 |y_1 - y_0| < \delta_2. \tag{11}$$

In particular, $y_k, y_{k-1} \in J$.

Now we have

$$(y_{k+1} - y_k) = (y_k - y_{k-1}) - \frac{g(y_k) - g(y_{k-1})}{a}$$
$$= \left(1 - \frac{g'(\xi)}{a}\right)(y_k - y_{k-1}).$$
(12)

Since $y_k, y_{k-1} \in J$, we have $\xi \in J$. By our choice of I and J, we have $g'(\xi) = \frac{\partial F(x,\xi)}{\partial y} \in \left(\frac{a}{2}, \frac{3a}{2}\right)$ which gives

$$|y_{k+1} - y_k| \leqslant \frac{|y_k - y_{k-1}|}{2}.$$
(13)

Now we can conclude that $\{y_n\}$ is a Cauchy sequence and therefore converges: $\lim_{n \to \infty} y_n = y \in J$. Now taking limit $n \to \infty$ in both sides of (5) we have

$$y = y - \frac{g(y)}{a} \Longrightarrow g(y) = 0$$
 that is $F(x, y) = 0.$ (14)

Note that here we have used the continuity of g(y) which is a consequence of the continuity of f(x, y) which is in turn a consequence of the differentiability of f which in turn follows from the assumption that f's partial derivatives are continuous.

• Step 2. We prove that y is unique in J. That is, if $f(x, y_1) = f(x, y_2) = 0$ for $y_1, y_2 \in J$, then $y_1 = y_2$. For such y_1, y_2 we would have some $\xi \in (y_1, y_2)$ such that

$$0 = f(x, y_1) - f(x, y_2) = \frac{\partial f(x, \xi)}{\partial y} (y_1 - y_2).$$
(15)

Now we know that for all $(x, y) \in I \times J$, $\frac{\partial f(x, y)}{\partial y} \in \left(\frac{a}{2}, \frac{3a}{2}\right)$ for some $a \neq 0$. Therefore $\frac{\partial f(x, \xi)}{\partial y} \neq 0$ which means $y_1 - y_2 = 0$.

• Step 3. We prove differentiability of Y and calculate the differential. Since

$$F(x, Y(x)) = 0 \tag{16}$$

we have

$$F(x + \delta x, Y(x + \delta x)) = 0. \tag{17}$$

By mean value theorem we have

$$F(x + \delta x, Y(x + \delta x)) - F(x, Y(x + \delta x)) + F(x, Y(x + \delta x)) - F(x, y) = 0$$
(18)

which gives

$$\frac{\partial F}{\partial x}(\xi)\,\delta x + \frac{\partial F}{\partial y}(\xi)\left(Y(x+\delta x) - Y(x)\right) = 0\tag{19}$$

which gives

$$\frac{Y(x+\delta x) - Y(x)}{\delta x} = -\frac{F_x}{F_y}.$$
(20)

This proves differentiability together with the continuity of the derivative. \Box

Problem 1. The above proof still works for $f: \mathbb{R}^N \mapsto \mathbb{R}$. Figure out the details.

Theorem 2. (Inverse function theorem) Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable with continuous derivative. Let $y_0 \in \mathbb{R}$ and set $x_0 = f(y_0)$. Then if $f'(y_0) \neq 0$, there are intervals $I \ni x_0, J \ni y_0$ such that there is a function g satisfying f(g(x)) = x fo all $x \in J$.

Exercise 1. Prove the above theorem.

Example 3. Let y = Y(x) be defined through Y(1) = 1 and

$$x^2 y^2 - 3 y + 2 x^3 = 0. (21)$$

Find Y'(1).

Solution. First check

$$\frac{\partial (x^2 y^2 - 3 y + 2 x^3)}{\partial y} (1, 1) = (2 x^2 y - 3)|_{x=1, y=1} = -1 \neq 0$$
(22)

So the implicit function exists. Now taking $\frac{\mathrm{d}}{\mathrm{d}x}$ to

$$x^{2}Y(x)^{2} - 3Y(x) + 2x^{3} = 0$$
⁽²³⁾

we have

$$2 x Y(x)^{2} + 2 x^{2} Y(x) Y'(x) - 3 Y'(x) + 6 x^{2} = 0.$$
(24)

Setting x = 1 we have

$$2 + 2Y'(1) - 3Y'(1) + 6 = 0 \Longrightarrow Y'(1) = 8.$$
⁽²⁵⁾

Remark 4. As can be seen in the above example, often it is simpler to use chain rule instead of trying to remember the formula $Y'(x) = -\left(\frac{\partial f}{\partial x}(x, Y(x))\right) / \left(\frac{\partial f}{\partial y}(x, Y(x))\right)$.

Example 5. Let z = Z(x, y) be defined through

$$\sin z - x \, y \, z = 0. \tag{26}$$

Find $\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}$.

Solution. First we check

$$\frac{\partial(\sin z - x \, y \, z)}{\partial z} = \cos z - x \, y. \tag{27}$$

So the theorem can be applied at points where $\cos z - x y \neq 0$. Then we can easily obtain

$$\frac{\partial z}{\partial x} = \frac{y z}{\cos z - x y}, \qquad \frac{\partial z}{\partial y} = \frac{x z}{\cos z - x y}.$$
(28)

Exercise 2. Let F be continuously differentiable. Consider F(x, y, z) = 0. Prove $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} = -1$.