Implicit function theorem in IR?

We now consider the equation
flx,y)=0 (1)

where f:R?— R and try to solve it near (xq, yo)-

Theorem 1. (Implicit function theorem in R?) Let f: R?— R satisfy

i. f(xz,y) is partially differentiable with continuous partial derivatives;
1. f(.’I]Q, yO) = O;
. of
111, a—y(xo, Yo) #0.
Then there is an open interval I x J such that (zo,yo) € I x J and

i. For every x €I there is a unique y € J such that f(x,y)=0. Thus we can define the implicit function
Y(z):=y.
1. Y(Io) =1%o,

1. Y is differentiable with continuous derivatives;

w. Forxel,

V(o) =—( L.y )/ Liw vy ) @)

Proof. To simplify presentation, let a:= ﬂ(xo, yo). We choose I X J:=(xg— 01,20+ 1) X (yo— 02, yo+ 02)

d
with d1, 2 satisfying the following. Y

1. &2 srr(;@ll enough so that g—;(a:, y) € (%, 37‘1) for all ||(z, y) — (o, yo)|| <2 d2. This is possible as a £ 0,
and a—i is continuous.

2. For the above 2, we further choose §; < d2 such that for all = € (xg— 1, z¢ + d1), ‘L@yo) < 0s.

Combining these two, we see that for all (z,y) €1 x J,

g—;(:ﬁ,y)e (2 3_a> and '%@,yo)

279 <52 (3)

e First we try to define the function Y for x € I. That is for each x, we try to find y solving g(y) =0 where
9(y):=F(z,y). (4)
Start from yg, we define for every n > 1,

yn:ynfl_g(y+‘i1>- (5)



We prove the following:

For all n>1, |y, — yo| <2, and |yn41 — yn| < M
We prove through induction.
o Base step. We have
T, 1)
y1=yo—g(y0):>|y1—yo|=|f( y0)|<_2 (6)
a a 2
Now consider
Yo =y1 — 9(y1) (7)
a
and we have
_ /
yz—m—m—m—M—@—#)(yl—yo) 8)

for some £ € (yo, y1)-

3a

Since both y1, yo € J, we have ¢g’'(§) € (%, 7) and consequently

g — | < A0l (9)
o Induction step. Assume the claim holds for all n=1, ...,k — 1. Now consider the case n =k.
First by induction assumption
k—1— Yk—2 k—2— Yk—3 1— Yo
ok — | < 2 - [y = '<---<%, (10)
We have
Yk — Yol <2 [y1— yo| < 2. (11)

In particular, yg, yp—1€ J.

Now we have

(Yosr1—yk) = (Yb— Yk—1) _9(yr) — 9(yr—1)

- (1_#)(%_%&1) (12)

Since yi, yx—1 € J, we have £ € J. By our choice of T and J, we have g'(§) =—*
which gives

|yk+1_yk|<|yk_—2ykil|- (13)
Now we can conclude that {y,} is a Cauchy sequence and therefore converges: lim,, ooy, =y € J.
Now taking limit » — oo in both sides of (5) we have

g(ay) = ¢g(y) =0 that is F(z,y)=0. (14)

Yy=y-—



Note that here we have used the continuity of g(y) which is a consequence of the continuity of f(x,y)
which is in turn a consequence of the differentiability of f which in turn follows from the assumption
that f’s partial derivatives are continuous.

e Step 2. We prove that y is unique in J. That is, if f(z,y1) = f(z,y2) =0 for y1, y2 € J, then y; = ya.
For such y1, y2 we would have some £ € (y1, y2) such that

0= f(z, 1) f(x,y»:%ﬁ(yl—y». (15)

Now we know that for all (z,y) €l x J, af(gy’ v ¢ (%, 37(1) for some a+#0. Therefore af(;y’ &) # 0 which
means y; — y2 =0.

e Step 3. We prove differentiability of Y and calculate the differential. Since

F(z,Y(xz))=0 (16)
we have
F(x+dz,Y(x+dz))=0. (17)
By mean value theorem we have
F(x+z,Y(x+0x))— F(z,Y(x+6z)) + F(z,Y (z +0z)) — F(z,y) =0 (18)
which gives
Fo(€) 8+ GO (¥ (a+ d2) = Y (2) =0 (19)
which gives
Y(x+5§:z—Y(:r):_%. (20)
This proves differentiability together with the continuity of the derivative. O

Problem 1. The above proof still works for f: RY— R. Figure out the details.

Theorem 2. (Inverse function theorem) Let f:R+— R be differentiable with continuous derivative. Let
yo € R and set xo= f(yo). Then if f'(yo)#£0, there are intervals I > xo, J 3 yo such that there is a function

g satisfying f(g(z)) ==z fo all z € J.

Exercise 1. Prove the above theorem.

Example 3. Let y=Y(x) be defined through Y (1) =1 and

2?2 y?—3y+223=0. (21)
Find Y'(1).

Solution. First check

I(x?y? —3y+223)
Oy

(1,1) =222y = 3)|a=1,y=1=—1+#0 (22)



So the implicit function exists. Now taking % to

2?Y(2)?=3Y (z)+223=0 (23)
we have
20Y(2)?+222Y (2)Y'(2) —3Y'(x) + 622 =0. (24)
Setting =1 we have
242Y’(1)-3Y'(1)+6=0=Y'(1) =8. (25)

Remark 4. As can be seen in the above example, often it is simpler to use chain rule instead of trying to
3 d
remember the formula Y'(z) = _(8_£($’ Y (z)) )/(8—5(:10, Y(;C)))

Example 5. Let z=Z(x, y) be defined through

sinz —zyz=0. (26)

. .07 oz
Find 2 Ty
Solution. First we check

d(sinz —xyz)

5 =cosz—Ty. (27)

So the theorem can be applied at points where cos z —zy# 0. Then we can easily obtain

0z z 0z Tz
Zo__Y¥r__ Z___TZ (28)
Jr cosz—zxy Jdy cosz—zxy

Exercise 2. Let F' be continuously differentiable. Consider F(z,y, z) =0. Prove g—z%% =—1.



