Implicit function theorem in \mathbb{R}^{2}

We now consider the equation

$$
\begin{equation*}
f(x, y)=0 \tag{1}
\end{equation*}
$$

where $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ and try to solve it near $\left(x_{0}, y_{0}\right)$.

Theorem 1. (Implicit function theorem in \mathbb{R}^{2}) Let $f: \mathbb{R}^{2} \mapsto \mathbb{R}$ satisfy
i. $f(x, y)$ is partially differentiable with continuous partial derivatives;
ii. $f\left(x_{0}, y_{0}\right)=0$;
iii. $\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \neq 0$.

Then there is an open interval $I \times J$ such that $\left(x_{0}, y_{0}\right) \in I \times J$ and
i. For every $x \in I$ there is a unique $y \in J$ such that $f(x, y)=0$. Thus we can define the implicit function $Y(x):=y$.
ii. $Y\left(x_{0}\right)=y_{0}$;
iii. Y is differentiable with continuous derivatives;
iv. For $x \in I$,

$$
\begin{equation*}
Y^{\prime}(x)=-\left(\frac{\partial f}{\partial x}(x, Y(x))\right) /\left(\frac{\partial f}{\partial y}(x, Y(x))\right) \tag{2}
\end{equation*}
$$

Proof. To simplify presentation, let $a:=\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$. We choose $I \times J:=\left(x_{0}-\delta_{1}, x_{0}+\delta_{1}\right) \times\left(y_{0}-\delta_{2}, y_{0}+\delta_{2}\right)$ with δ_{1}, δ_{2} satisfying the following.

1. δ_{2} small enough so that $\frac{\partial f}{\partial y}(x, y) \in\left(\frac{a}{2}, \frac{3 a}{2}\right)$ for all $\left\|(x, y)-\left(x_{0}, y_{0}\right)\right\|<2 \delta_{2}$. This is possible as $a \neq 0$, and $\frac{\partial f}{\partial y}$ is continuous.
2. For the above δ_{2}, we further choose $\delta_{1} \leqslant \delta_{2}$ such that for all $x \in\left(x_{0}-\delta_{1}, x_{0}+\delta_{1}\right),\left|\frac{2 f\left(x, y_{0}\right)}{a}\right|<\delta_{2}$.

Combining these two, we see that for all $(x, y) \in I \times J$,

$$
\begin{equation*}
\frac{\partial f}{\partial y}(x, y) \in\left(\frac{a}{2}, \frac{3 a}{2}\right) \text { and }\left|\frac{2 f\left(x, y_{0}\right)}{a}\right|<\delta_{2} \tag{3}
\end{equation*}
$$

- First we try to define the function Y for $x \in I$. That is for each x, we try to find y solving $g(y)=0$ where

$$
\begin{equation*}
g(y):=F(x, y) \tag{4}
\end{equation*}
$$

Start from y_{0}, we define for every $n \geqslant 1$,

$$
\begin{equation*}
y_{n}=y_{n-1}-\frac{g\left(y_{n-1}\right)}{a} \tag{5}
\end{equation*}
$$

We prove the following:
For all $n \geqslant 1,\left|y_{n}-y_{0}\right|<\delta_{2}$, and $\left|y_{n+1}-y_{n}\right| \leqslant \frac{\left|y_{n}-y_{n-1}\right|}{2}$.
We prove through induction.

- Base step. We have

$$
\begin{equation*}
y_{1}=y_{0}-\frac{g\left(y_{0}\right)}{a} \Longrightarrow\left|y_{1}-y_{0}\right|=\frac{\left|f\left(x, y_{0}\right)\right|}{a}<\frac{\delta_{2}}{2} \tag{6}
\end{equation*}
$$

Now consider

$$
\begin{equation*}
y_{2}=y_{1}-\frac{g\left(y_{1}\right)}{a} \tag{7}
\end{equation*}
$$

and we have

$$
\begin{equation*}
y_{2}-y_{1}=y_{1}-y_{0}-\frac{g\left(y_{1}\right)-g\left(y_{0}\right)}{a}=\left(1-\frac{g^{\prime}(\xi)}{a}\right)\left(y_{1}-y_{0}\right) \tag{8}
\end{equation*}
$$

for some $\xi \in\left(y_{0}, y_{1}\right)$.
Since both $y_{1}, y_{0} \in J$, we have $g^{\prime}(\xi) \in\left(\frac{a}{2}, \frac{3 a}{2}\right)$ and consequently

$$
\begin{equation*}
\left|y_{2}-y_{1}\right|<\frac{\left|y_{1}-y_{0}\right|}{2} \tag{9}
\end{equation*}
$$

- Induction step. Assume the claim holds for all $n=1, \ldots, k-1$. Now consider the case $n=k$. First by induction assumption

$$
\begin{equation*}
\left|y_{k}-y_{k-1}\right| \leqslant \frac{\left|y_{k-1}-y_{k-2}\right|}{2} \leqslant \frac{\left|y_{k-2}-y_{k-3}\right|}{2^{2}} \leqslant \cdots \leqslant \frac{\left|y_{1}-y_{0}\right|}{2^{k-1}}, \tag{10}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|y_{k}-y_{0}\right|<2\left|y_{1}-y_{0}\right|<\delta_{2} . \tag{11}
\end{equation*}
$$

In particular, $y_{k}, y_{k-1} \in J$.
Now we have

$$
\begin{align*}
\left(y_{k+1}-y_{k}\right) & =\left(y_{k}-y_{k-1}\right)-\frac{g\left(y_{k}\right)-g\left(y_{k-1}\right)}{a} \\
& =\left(1-\frac{g^{\prime}(\xi)}{a}\right)\left(y_{k}-y_{k-1}\right) \tag{12}
\end{align*}
$$

Since $y_{k}, y_{k-1} \in J$, we have $\xi \in J$. By our choice of I and J, we have $g^{\prime}(\xi)=\frac{\partial F(x, \xi)}{\partial y} \in\left(\frac{a}{2}, \frac{3 a}{2}\right)$ which gives

$$
\begin{equation*}
\left|y_{k+1}-y_{k}\right| \leqslant \frac{\left|y_{k}-y_{k-1}\right|}{2} \tag{13}
\end{equation*}
$$

Now we can conclude that $\left\{y_{n}\right\}$ is a Cauchy sequence and therefore converges: $\lim _{n \longrightarrow \infty} y_{n}=y \in J$. Now taking limit $n \longrightarrow \infty$ in both sides of (5) we have

$$
\begin{equation*}
y=y-\frac{g(y)}{a} \Longrightarrow g(y)=0 \text { that is } F(x, y)=0 \tag{14}
\end{equation*}
$$

Note that here we have used the continuity of $g(y)$ which is a consequence of the continuity of $f(x, y)$ which is in turn a consequence of the differentiability of f which in turn follows from the assumption that f 's partial derivatives are continuous.

- Step 2. We prove that y is unique in J. That is, if $f\left(x, y_{1}\right)=f\left(x, y_{2}\right)=0$ for $y_{1}, y_{2} \in J$, then $y_{1}=y_{2}$. For such y_{1}, y_{2} we would have some $\xi \in\left(y_{1}, y_{2}\right)$ such that

$$
\begin{equation*}
0=f\left(x, y_{1}\right)-f\left(x, y_{2}\right)=\frac{\partial f(x, \xi)}{\partial y}\left(y_{1}-y_{2}\right) \tag{15}
\end{equation*}
$$

Now we know that for all $(x, y) \in I \times J, \frac{\partial f(x, y)}{\partial y} \in\left(\frac{a}{2}, \frac{3 a}{2}\right)$ for some $a \neq 0$. Therefore $\frac{\partial f(x, \xi)}{\partial y} \neq 0$ which means $y_{1}-y_{2}=0$.

- Step 3. We prove differentiability of Y and calculate the differential. Since

$$
\begin{equation*}
F(x, Y(x))=0 \tag{16}
\end{equation*}
$$

we have

$$
\begin{equation*}
F(x+\delta x, Y(x+\delta x))=0 \tag{17}
\end{equation*}
$$

By mean value theorem we have

$$
\begin{equation*}
F(x+\delta x, Y(x+\delta x))-F(x, Y(x+\delta x))+F(x, Y(x+\delta x))-F(x, y)=0 \tag{18}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{\partial F}{\partial x}(\xi) \delta x+\frac{\partial F}{\partial y}(\xi)(Y(x+\delta x)-Y(x))=0 \tag{19}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\frac{Y(x+\delta x)-Y(x)}{\delta x}=-\frac{F_{x}}{F_{y}} . \tag{20}
\end{equation*}
$$

This proves differentiability together with the continuity of the derivative.

Problem 1. The above proof still works for $f: \mathbb{R}^{N} \mapsto \mathbb{R}$. Figure out the details.

Theorem 2. (Inverse function theorem) Let $f: \mathbb{R} \mapsto \mathbb{R}$ be differentiable with continuous derivative. Let $y_{0} \in \mathbb{R}$ and set $x_{0}=f\left(y_{0}\right)$. Then if $f^{\prime}\left(y_{0}\right) \neq 0$, there are intervals $I \ni x_{0}, J \ni y_{0}$ such that there is a function g satisfying $f(g(x))=x$ fo all $x \in J$.

Exercise 1. Prove the above theorem.

Example 3. Let $y=Y(x)$ be defined through $Y(1)=1$ and

$$
\begin{equation*}
x^{2} y^{2}-3 y+2 x^{3}=0 . \tag{21}
\end{equation*}
$$

Find $Y^{\prime}(1)$.
Solution. First check

$$
\begin{equation*}
\frac{\partial\left(x^{2} y^{2}-3 y+2 x^{3}\right)}{\partial y}(1,1)=\left.\left(2 x^{2} y-3\right)\right|_{x=1, y=1}=-1 \neq 0 \tag{22}
\end{equation*}
$$

So the implicit function exists. Now taking $\frac{\mathrm{d}}{\mathrm{d} x}$ to

$$
\begin{equation*}
x^{2} Y(x)^{2}-3 Y(x)+2 x^{3}=0 \tag{23}
\end{equation*}
$$

we have

$$
\begin{equation*}
2 x Y(x)^{2}+2 x^{2} Y(x) Y^{\prime}(x)-3 Y^{\prime}(x)+6 x^{2}=0 \tag{24}
\end{equation*}
$$

Setting $x=1$ we have

$$
\begin{equation*}
2+2 Y^{\prime}(1)-3 Y^{\prime}(1)+6=0 \Longrightarrow Y^{\prime}(1)=8 \tag{25}
\end{equation*}
$$

Remark 4. As can be seen in the above example, often it is simpler to use chain rule instead of trying to remember the formula $Y^{\prime}(x)=-\left(\frac{\partial f}{\partial x}(x, Y(x))\right) /\left(\frac{\partial f}{\partial y}(x, Y(x))\right)$.

Example 5. Let $z=Z(x, y)$ be defined through

$$
\begin{equation*}
\sin z-x y z=0 \tag{26}
\end{equation*}
$$

Find $\frac{\partial Z}{\partial x}, \frac{\partial Z}{\partial y}$.
Solution. First we check

$$
\begin{equation*}
\frac{\partial(\sin z-x y z)}{\partial z}=\cos z-x y \tag{27}
\end{equation*}
$$

So the theorem can be applied at points where $\cos z-x y \neq 0$. Then we can easily obtain

$$
\begin{equation*}
\frac{\partial z}{\partial x}=\frac{y z}{\cos z-x y}, \quad \frac{\partial z}{\partial y}=\frac{x z}{\cos z-x y} . \tag{28}
\end{equation*}
$$

Exercise 2. Let F be continuously differentiable. Consider $F(x, y, z)=0$. Prove $\frac{\partial x}{\partial y} \frac{\partial y}{\partial z} \frac{\partial z}{\partial x}=-1$.

