
Motivation

Consider the equation for the unit circle S:

x2 + y2 =1. (1)

We see that if we consider y > 0, we can write y as a function of x:

y = 1−x2
√

. (2)

Similarly, for y < 0, we can write

y =− 1− x2
√

. (3)

Summarizing, given any (x0, y0)∈ S with y0� 0, then there is an open set E containing x0 such that there
is f : E� R such that y = f(x) for x∈E. This function is “hidden” in the relation x2 + y2 = 1. We can say
that y is a function of x given “implicitly”, or an “implicit function”.

Exercise 1. For what (x0, y0) can x be written as a function of y?

Similarly, for a function equation f(x, y, z)=0, we expect to be able to “solve” z =Z(x, y) or x=X(y, z) or

y = Y (x, z). In other words, f(x, y, z) =0 should be the equation of a surface in R
3.

Example 1. Consider 3 x+ 2 y − 4z + 7 =0. We see that it is possible to re-write it as

z = Z(x, y)7 3

4
x +

1

2
y +

7

4
(4)

which is our familiar equation for a plane in R
3.

In general, if we have M equations:

f1(x1,	 , xN) = 0 (5)� � �
fM(x1,	 , xN) = 0 (6)

We are interested in the situation N >M , and expect to write M of the xi’s as functions of the other N −M

xi’s.

We start from two simpler situations:

1. fi’s are all linear;

2. f :R2� R.

In the first situation we figure out how to deal with high dimensions, and in the second we figure out how
to deal with nonlinearity. Then we will put things together and prove the general situation.

Implicit function theorems for linear functions

We consider the case when f :RN� R
M is linear. In this case the M equations

f1(x1,	 , xN) = 0 (7)� � �
fM(x1,	 , xN) = 0 (8)
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reduces to M linear equations

a11x1 +
 + a1N xN = 0 (9)� � �
aM1 x1 +
 + aMN xN = 0 (10)

The problem now reduces to solving a system of linear equations.

Example 2. Consider the following system

3 x1 + x2 +x3 = 0 (11)

2 x1 + x2 +x3 = 0 (12)

We check

• Can we write x1, x2 as a function of x3? Solving

3x1 + x2 = −x3 (13)

2x1 + x2 = −x3 (14)

we have

x1 =0, x2 =−x3. (15)

• Can we write x2, x3 as a function of x1? Solving

x2 + x3 = −3x1 (16)

x2 + x3 = −2x1 (17)

we see that x2 = x3 = x1 = 0 which means we cannot write x2, x3 as functions of x1.

• Can we write x1, x3 as a function of x2? Solving

3x1 + x3 = −x2 (18)

2x1 + x3 = −x2 (19)

we have

x1 =0, x3 =−x2. (20)

Now if we use the language of matrices, the situation is quite clear: For example, when trying to solve x1,

x2 using x3, we write the equation as

(

3 1
2 1

)(

x1

x2

)

=

(

−x3

−x3

)

(21)

and it can be solved if the matrix
(

3 1

2 1

)

is invertible, or equivalently det
(

3 1

2 1

)� 0. In this case we have

(

x1

x2

)

=

(

3 1
2 1

)

−1
(

−x3

−x3

)

. (22)
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Note that this “implicit function” is also linear.

We see that it may or may not be possible to write M of the xi’s as functions of the other N − M xi’s. In
the following we obtain a sufficient condition.

Theorem 3. Let N > M. Let f : RN � R
M be linear. Then a sufficient and necessary condition for the

solution to

f (x)= 0 (23)

to take the form





x1�
xM



=





X1(xM+1,	 , xN)�
XN(xM+1,	 , xN)



 (24)

is

det









∂f1

∂x1

 ∂f1

∂xM� �
∂fM

∂x1


 ∂fM

∂xM









� 0. (25)

Remark 4. It is clear that we can replace x1,	 , xN by any N of the variables.

Proof. Let A be the matrix representation of f . Then

A =









∂f1

∂x1


 ∂f1

∂xN� �
∂fN

∂x1


 ∂fN

∂xN









=( A1 A2 ) (26)

where

A1 =









∂f1

∂x1


 ∂f1

∂xM� �
∂fM

∂x1


 ∂fM

∂xM









, A2 =









∂f1

∂xM+1


 ∂f1

∂xN� �
∂fM

∂xM+1


 ∂fM

∂xN









(27)

and we can write the equation f(x)= 0 as

A1





x1�
xM



=−A2





xM+1�
xN



. (28)

Now since detA1� 0, it is invertible and





x1�
xM



=A1
−1 A2





xM+1�
xN



. (29)

Thus ends the proof. �
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Remark 5. Note that we can understand the above result from a function point of view: The implicit
function g has matrix representation A1

−1 A2. The matrices A1, A2 are the Jacobian matrices of f with

respect to (x1,	 , xM) and (xM+1,	 , xN) respectively. If we denote y7 



x1�
xM



 and x7 



xM+1�
xN



, we can

write the above results as:

Dg(x0)= Dyf (x0, y0)
−1 ◦Dxf(x0, y0). (30)

We will see that this is the version that can be generalized to the nonlinear case.

Theorem 6. (Inverse function theorem) Let f :RN� R
N be linear. Then f has an inverse function if

and only if the determinant of the Jacobian is nonzero.

Proof. We are solving

f (y)=x. (31)

Now let N =2 Mand identify y =





x1�
xM



,x=





xM+1�
xN



, we can apply the implicit function theorem and obtain

the result. �
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