Directional derivatives

Definition 1. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$. Let $\boldsymbol{x}_{0} \in \mathbb{R}$ and $\boldsymbol{v} \in \mathbb{R}^{N}$. Then we say the directional derivative $\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{v}}$ is defined as the limit

$$
\begin{equation*}
\lim _{h \rightarrow 0, h \neq 0} \frac{\boldsymbol{f}\left(\boldsymbol{x}_{0}+h \boldsymbol{v}\right)-\boldsymbol{f}\left(\boldsymbol{x}_{0}\right)}{h} . \tag{1}
\end{equation*}
$$

Example 2. Let $f(x, y)=x y$. Let $\boldsymbol{v}_{1}=(1,1), \boldsymbol{v}_{2}=(2,2)$. Calculate $\frac{\partial f}{\partial \boldsymbol{v}_{1}}(1,1), \frac{\partial f}{\partial \boldsymbol{v}_{2}}(1,1)$.
Solution. We have

$$
\begin{equation*}
f((1,1)+h(1,1))-f(1,1)=(1+h)^{2}-1=2 h+h^{2} . \tag{2}
\end{equation*}
$$

Now it is clear that $\frac{\partial f}{\partial \boldsymbol{v}_{1}}(1,1)=2$. Similarly we have $\frac{\partial f}{\partial \boldsymbol{v}_{2}}(1,1)=4$.

Exercise 1. Explain that partial derivatives are special cases of directional derivatives.
Exercise 2. Assume \boldsymbol{f} is differentiable at \boldsymbol{x}_{0}. Prove that its directional derivative exists for all $\boldsymbol{v} \in \mathbb{R}^{N}$. Find a formula for its directional derivative using the Jacobian matrix of \boldsymbol{f}.

Exercise 3. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ be such that its directional derivative exists for all $\boldsymbol{v} \in \mathbb{R}^{N}$ at some point $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$. Can we conclude that \boldsymbol{f} is continuous at \boldsymbol{x}_{0} ? Justify your answer.

Proposition 3. Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ be differentiable at \boldsymbol{x}_{0}. Let $\boldsymbol{v} \in \mathbb{R}^{N}$ be any vector. Then

$$
\begin{equation*}
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{v}}=\left(D \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)\right)(\boldsymbol{v}) \tag{3}
\end{equation*}
$$

Remark 4. Note that the left hand side is a vector in \mathbb{R}^{M}, while the right hand side is a linear function $D \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$ acting on a vector $\boldsymbol{v} \in \mathbb{R}^{N}$, thus is also a vector in \mathbb{R}^{M}.

Remark 5. Clearly, if A is the representation of $D \boldsymbol{f}\left(\boldsymbol{x}_{0}\right)$, we have

$$
\begin{equation*}
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{v}}=A \boldsymbol{v} \tag{4}
\end{equation*}
$$

This time the right hand side is matrix-vector multiplication.

Proof. Exercise.

Exercise 4. Let $\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{N} \in \mathbb{R}^{N}$ be such that $\left\|\boldsymbol{v}_{i}\right\|=1$ for all $i, \boldsymbol{v}_{i} \cdot \boldsymbol{v}_{j}=0$ for all $i \neq j$. Let $u: \mathbb{R}^{N} \mapsto \mathbb{R}$ be differentiable. Prove

$$
\begin{equation*}
\left(\frac{\partial u}{\partial \boldsymbol{v}_{1}}\right)^{2}+\cdots+\left(\frac{\partial u}{\partial \boldsymbol{v}_{N}}\right)^{2}=\left(\frac{\partial u}{\partial x_{1}}\right)^{2}+\cdots+\left(\frac{\partial u}{\partial x_{N}}\right)^{2} \tag{5}
\end{equation*}
$$

Question 6. If directional derivative linear in the direction, then differentiable?

Geometric meaning of the differential

Let $\boldsymbol{f}: \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ be differentiable at $\boldsymbol{x}_{0} \in \mathbb{R}^{N}$. Then $D \boldsymbol{f}\left(\boldsymbol{x}_{0}\right): \mathbb{R}^{N} \mapsto \mathbb{R}^{M}$ is a linear function and has a matrix representation, called the Jacobian. We can view the Jacobian $\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)$ row by row or column by column.

- Column-by-column.

$$
\left(\begin{array}{lll}
\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}
\end{array}\right)=\left(\begin{array}{lll}
\frac{\partial \boldsymbol{f}}{\partial x_{1}} & \cdots & \frac{\partial \boldsymbol{f}}{\partial x_{N}} \tag{6}
\end{array}\right)
$$

This point of view is more convenient when $N<M$. The basic understanding is that each vector $\frac{\partial \boldsymbol{f}}{\partial x_{i}}$ is a tangent vector to the image of \boldsymbol{f}, which is a surface in \mathbb{R}^{M}.

- Row-by-row.

$$
\left(\frac{\partial \boldsymbol{f}}{\partial \boldsymbol{x}}\right)=\left(\begin{array}{c}
\left(\operatorname{grad} f_{1}\right)^{T} \tag{7}\\
\vdots \\
\left(\operatorname{grad} f_{M}\right)^{T}
\end{array}\right)
$$

where the "gradient" is defined for any scalar function $f: \mathbb{R}^{N} \mapsto \mathbb{R}$ through

$$
(\operatorname{grad} f)\left(\boldsymbol{x}_{0}\right):=\left(\begin{array}{c}
\frac{\partial f}{\partial x_{1}}\left(\boldsymbol{x}_{0}\right) \tag{8}\\
\vdots \\
\frac{\partial f}{\partial x_{N}}\left(\boldsymbol{x}_{0}\right)
\end{array}\right)
$$

The geometric meaning of grad f will be discussed later.
The case $N<M$
There are two special sub-cases where the geometric meaning is particularly clear: $N=1$ and $N=M-1$.
$N=1$
In the case $N=1$ we often denote the variable by t, that is

$$
\boldsymbol{f}(t)=\left(\begin{array}{c}
f_{1}(t) \tag{9}\\
\vdots \\
f_{M}(t)
\end{array}\right)
$$

It is easy to see then that the matrix representation of $D \boldsymbol{f}$ is $\left(\begin{array}{c}f_{1}^{\prime}(t) \\ \vdots \\ f_{M}^{\prime}(t)\end{array}\right)$ which can be seen as a vector in \mathbb{R}^{M}.
Exercise 5. Prove the above claim: The matrix representation of $D \boldsymbol{f}$ is $\left(\begin{array}{c}f_{1}^{\prime}(t) \\ \vdots \\ f_{M}^{\prime}(t)\end{array}\right)$
To understand the geometric meaning of this vector, we need to first understand the geometric meaning of $\boldsymbol{f}(t)$.

Definition 7. (Curve in \mathbb{R}^{M}) A curve in \mathbb{R}^{M} is the image of a continuous function $\boldsymbol{f}: \mathbb{R} \mapsto \mathbb{R}^{M}$. If \boldsymbol{f} is furthermore one-to-one then it is called a simple curve.

Example 8. The unit circle in \mathbb{R}^{2} is a curve.

We notice that the image of

$$
\begin{equation*}
\boldsymbol{f}(t):=\binom{\cos t}{\sin t} \tag{10}
\end{equation*}
$$

is exactly the unit circle.

Now from the definition

$$
\begin{equation*}
\boldsymbol{f}^{\prime}\left(t_{0}\right)=\lim _{t \longrightarrow t_{0}} \frac{\boldsymbol{f}(t)-\boldsymbol{f}\left(t_{0}\right)}{t-t_{0}} \tag{11}
\end{equation*}
$$

we see that the line:

$$
\begin{equation*}
\left\{\boldsymbol{f}\left(t_{0}\right)+s \boldsymbol{f}^{\prime}\left(t_{0}\right) \mid s \in \mathbb{R}\right\} \tag{12}
\end{equation*}
$$

should be the tangent line of the curve $\boldsymbol{f}(t)$. One can also write the equation for this line in coordinates:

$$
\begin{equation*}
\frac{x_{1}-f_{1}\left(t_{0}\right)}{f_{1}^{\prime}\left(t_{0}\right)}=\cdots=\frac{x_{M}-f_{M}\left(t_{0}\right)}{f_{M}^{\prime}\left(t_{0}\right)} \tag{13}
\end{equation*}
$$

Exercise 6. How should we understand the above equation if some $f_{i}^{\prime}\left(t_{0}\right)=0$?

Example 9. Consider

$$
\boldsymbol{f}(t):=\left(\begin{array}{c}
R \cos t \tag{14}\\
R \sin t \\
t
\end{array}\right)
$$

Find the equation for its tangent.
Solution. We have

$$
\boldsymbol{f}^{\prime}(t)=\left(\begin{array}{c}
-R \sin t \tag{15}\\
R \cos t \\
1
\end{array}\right)
$$

so the equation is

$$
\begin{equation*}
\frac{x-R \cos t_{0}}{-R \sin t_{0}}=\frac{y-R \sin t_{0}}{R \cos t_{0}}=z-t_{0} \tag{16}
\end{equation*}
$$

Remark 10. Note that if we identify $\boldsymbol{f}(t)$ as a curve in \mathbb{R}^{M}, then the size of $\boldsymbol{f}^{\prime}(t)$ does not matter, as it only represents details of parametrization; On the other hand the direction $\boldsymbol{f}^{\prime}(t) /\left\|\boldsymbol{f}^{\prime}(t)\right\|$ is very informative. Therefore in classical differential geometry, we often use the so-called "arc length" parametrization, that is do a change of variable $t \longrightarrow s$ where s is determined through

$$
\begin{equation*}
\frac{\mathrm{d} s}{\mathrm{~d} t}=\left\|\boldsymbol{f}^{\prime}(t)\right\| \tag{17}
\end{equation*}
$$

Exercise 7. Prove that after this change of variable, $\left\|\boldsymbol{f}^{\prime}(s)\right\|=1$.

