
Directional derivatives

Definition 1. Let f :RN�R
M. Let x0∈R and v∈R

N. Then we say the directional derivative
∂f

∂v
is defined

as the limit

lim
h→0,h� 0

f (x0 + h v)− f (x0)

h
. (1)

Example 2. Let f(x, y) =x y. Let v1 = (1, 1), v2 =(2, 2). Calculate
∂f

∂v1

(1, 1),
∂f

∂v2

(1, 1).

Solution. We have

f((1, 1)+ h (1, 1))− f(1, 1)= (1+ h)2− 1 =2 h +h2. (2)

Now it is clear that
∂f

∂v1

(1, 1) =2. Similarly we have
∂f

∂v2

(1, 1)= 4.

Exercise 1. Explain that partial derivatives are special cases of directional derivatives.

Exercise 2. Assume f is differentiable at x0. Prove that its directional derivative exists for all v ∈R
N. Find a formula

for its directional derivative using the Jacobian matrix of f.

Exercise 3. Let f :RN�RM be such that its directional derivative exists for all v∈RN at some point x0∈RN. Can we

conclude that f is continuous at x0? Justify your answer.

Proposition 3. Let f :RN� R
M be differentiable at x0. Let v ∈R

N be any vector. Then

∂f

∂v
= (Df (x0))(v). (3)

Remark 4. Note that the left hand side is a vector in R
M, while the right hand side is a linear function

Df (x0) acting on a vector v ∈R
N, thus is also a vector in R

M.

Remark 5. Clearly, if A is the representation of Df(x0), we have

∂f

∂v
= A v. (4)

This time the right hand side is matrix-vector multiplication.

Proof. Exercise. �

Exercise 4. Let v1,v2,
 , vN ∈R
N be such that ‖vi‖=1 for all i, vi ·vj =0 for all i� j. Let u:RN�R be differentiable.

Prove
(

∂u

∂v1

)

2

+� +

(

∂u

∂vN

)

2

=

(

∂u

∂x1

)

2

+� +

(

∂u

∂xN

)

2

. (5)

——————————————————————————————————————–

Question 6. If directional derivative linear in the direction, then differentiable?
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Geometric meaning of the differential

Let f :RN�RM be differentiable at x0∈RN. Then Df (x0):RN�RM is a linear function and has a matrix

representation, called the Jacobian. We can view the Jacobian
(

∂f

∂x

)

row by row or column by column.

• Column-by-column.
(

∂f

∂x

)

=
(

∂f

∂x1

� ∂f

∂xN

)

(6)

This point of view is more convenient when N <M . The basic understanding is that each vector
∂f

∂xi

is a tangent vector to the image of f , which is a surface in R
M.

• Row-by-row.

(

∂f

∂x

)

=







(grad f1)
T


(grad fM)T





 (7)

where the “gradient” is defined for any scalar function f :RN� R through

(grad f)(x0)8







∂f

∂x1

(x0)

∂f

∂xN

(x0)









(8)

The geometric meaning of grad f will be discussed later.

The case N < M

There are two special sub-cases where the geometric meaning is particularly clear: N =1 and N =M − 1.

N = 1

In the case N = 1 we often denote the variable by t, that is

f (t) =





f1(t)

fM(t)



. (9)

It is easy to see then that the matrix representation of Df is







f1
′(t)


fM
′ (t)





which can be seen as a vector in R
M.

Exercise 5. Prove the above claim: The matrix representation of Df is







f1
′(t)


fM
′ (t)







To understand the geometric meaning of this vector, we need to first understand the geometric meaning of
f(t).

Definition 7. (Curve in R
M) A curve in R

M is the image of a continuous function f :R� R
M. If f is

furthermore one-to-one then it is called a simple curve.

Example 8. The unit circle in R
2 is a curve.
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We notice that the image of

f(t)8 (

cos t

sin t

)

(10)

is exactly the unit circle.

Now from the definition

f ′(t0)= lim
t� t0

f (t)− f (t0)

t− t0
(11)

we see that the line:

{f (t0)+ s f ′(t0)P s∈R} (12)

should be the tangent line of the curve f(t). One can also write the equation for this line in coordinates:

x1− f1(t0)

f1
′(t0)

=� =
xM − fM(t0)

fM
′ (t0)

. (13)

Exercise 6. How should we understand the above equation if some fi
′(t0) =0?

Example 9. Consider

f (t)8



R cos t

R sin t

t



. (14)

Find the equation for its tangent.

Solution. We have

f ′(t) =





−R sin t

R cos t

1



 (15)

so the equation is

x−R cos t0
−R sin t0

=
y −R sin t0

R cos t0
= z − t0. (16)

Remark 10. Note that if we identify f (t) as a curve in R
M, then the size of f ′(t) does not matter, as it

only represents details of parametrization; On the other hand the direction f ′(t)/‖f ′(t)‖ is very informative.
Therefore in classical differential geometry, we often use the so-called “arc length” parametrization, that is
do a change of variable t� s where s is determined through

ds

dt
= ‖f ′(t)‖. (17)

Exercise 7. Prove that after this change of variable, ‖f ′(s)‖= 1.
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