Directional derivatives

Definition 1. Let f: R —RM. Let g€ R and v € RY. Then we say the directional derivative % 1s defined
as the limit

i (@o+hv) = f@o) (1)

h—0,h=£0 h

Example 2. Let f(z,y)=xzy. Let v1=(1,1),v2=(2,2). Calculate 88—1'}701(1, 1), ;}—'7;(1, 1).

Solution. We have
FL D) +h(1,1) = f(1,1)=(1+h)2—1=2h+h. (2)
Now it is clear that £ (1,1) =2. Similarly we have 2-(1,1) = 4.
Exercise 1. Explain that partial derivatives are special cases of directional derivatives.

Exercise 2. Assume f is differentiable at @g. Prove that its directional derivative exists for all v € RY. Find a formula
for its directional derivative using the Jacobian matrix of f.

Exercise 3. Let f:RY — RM be such that its directional derivative exists for all v € RY at some point 2o € RN. Can we
conclude that f is continuous at @¢? Justify your answer.

Proposition 3. Let f: RY — RM be differentiable at xo. Let v € RYN be any vector. Then
0
Y (Df(@o)). (3)

Remark 4. Note that the left hand side is a vector in R™, while the right hand side is a linear function
D f(x) acting on a vector v € RY, thus is also a vector in RM.

Remark 5. Clearly, if A is the representation of D f(xg), we have

% —Aw. (4)
This time the right hand side is matrix-vector multiplication.

Proof. Exercise. O

Exercise 4. Let v, vy, ..., vny € RN be such that [lvi]| =1 for all 4, v;- v; =0 for all i j. Let u: RY — R be differentiable.

Prove
ou \? du \?_ [ ou\? A \?
(aTl> +”'+(aTN> —<371> +'“+(aTN> ' ®)

Question 6. If directional derivative linear in the direction, then differentiable?



Geometric meaning of the differential

Let f: RN+ RM be differentiable at g € R™. Then D f(xo): RY —RM is a linear function and has a matrix
of

representation, called the Jacobian. We can view the Jacobian ( %)row by row or column by column.

¢ Column-by-column.

(5)-(#% - ) ©

This point of view is more convenient when N < M. The basic understanding is that each vector gf}
is a tangent vector to the image of f, which is a surface in RM.

e Row-by-row.

o\ _ (graO}fl)T
( ) (gfad'fM)T

where the “gradient” is defined for any scalar function f:RY — R through

%(mo)

(grad f)(zo) := : (8)
o (o)

oxr N

The geometric meaning of grad f will be discussed later.

The case N <M
There are two special sub-cases where the geometric meaning is particularly clear: N=1 and N=M — 1.
N=1
In the case N =1 we often denote the variable by ¢, that is
fi(t)

o= + (9)
fr(t)

H

It is easy to see then that the matrix representation of D f is ( ) which can be seen as a vector in RM.

Fha(t)

EEOR

Exercise 5. Prove the above claim: The matrix representation of D f is k :
Fir(t) }

To understand the geometric meaning of this vector, we need to first understand the geometric meaning of

Ft).

Definition 7. (Curve in RM) A curve in RM is the image of a continuous function f:R— RM. If f is
furthermore one-to-one then it is called a simple curve.

Example 8. The unit circle in IR? is a curve.



We notice that the image of

so=( o) (10)

sint

is exactly the unit circle.

Now from the definition

f'(to) = lim F(t) — fto) (11)

t—sto t—to

we see that the line:
{f(to) +s f'(to)] s € R} (12)

should be the tangent line of the curve f(t). One can also write the equation for this line in coordinates:

z1— fi(to) _ . _ v — fu(to) (13)
fi(to) fru(to)
Exercise 6. How should we understand the above equation if some f{(to) =07
Example 9. Consider
Rcost
f(t):=| Rsint (14)
t
Find the equation for its tangent.
Solution. We have
—Rsint
f't)=| Recost (15)
1
so the equation is
x—Rcostozy—Rsmtozz_tO' (16)

—Rsinty R costy

Remark 10. Note that if we identify f(t) as a curve in RM, then the size of f/(t) does not matter, as it
only represents details of parametrization; On the other hand the direction f'(t)/|| f'(¢)|| is very informative.
Therefore in classical differential geometry, we often use the so-called “arc length” parametrization, that is
do a change of variable t — s where s is determined through

ds ,
il PAOLE (17)

Exercise 7. Prove that after this change of variable, || f'(s)|| = 1.



