Differentiability

Definitions

Definition 1. $f: \mathbb{R}^N \mapsto \mathbb{R}^M$ is differentiable at x_0 if and only if there is a linear function $l: \mathbb{R}^N \mapsto \mathbb{R}^M$ such that

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0) - \boldsymbol{l}(\boldsymbol{x} - \boldsymbol{x}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = 0.$$
(1)

We denote l by $Df(\mathbf{x}_0)$, and call it the differential of f at \mathbf{x}_0 .

Remark 2. The above is equivalent to

$$\lim_{\|\boldsymbol{x}-\boldsymbol{x}_0\| \to 0} \frac{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0) - \boldsymbol{l}(\boldsymbol{x}-\boldsymbol{x}_0)\|}{\|\boldsymbol{x}-\boldsymbol{x}_0\|} = 0.$$
(2)

Exercise 1. Prove that the definition is also equivalent to

$$\lim_{\boldsymbol{y} \to \boldsymbol{0}} \frac{\|\boldsymbol{f}(\boldsymbol{x} + \boldsymbol{y}) - \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{l}(\boldsymbol{y})\|}{\|\boldsymbol{y}\|} = 0.$$
(3)

Remark 3. The differentiability defined above, when we replace \mathbb{R}^N be an abstract, possibly infinite dimensional space, is called "Frechét differentiability".

Example 4. Let $f: \mathbb{R}^N \mapsto \mathbb{R}^M$ be linear. Then f is differentiable at every $x_0 \in \mathbb{R}^N$, and $Df(x_0) = f$.

Proof. Fix any \boldsymbol{x}_0 . Take any $\boldsymbol{x} \in \mathbb{R}^N$. We have

$$f(x) - f(x_0) - f(x - x_0) = f(x) - f(x) = 0$$
 (4)

therefore

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0) - \boldsymbol{l}(\boldsymbol{x} - \boldsymbol{x}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = \lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{0}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = 0.$$
(5)

Thus ends the proof.

Example 5. Let $f: \mathbb{R}^2 \mapsto \mathbb{R}$ be given by

$$f(x, y) := a x^{2} + b x y + c y^{2}.$$
(6)

Prove that it is differentiable at (1,0) and find its differential there.

Proof. We need to find a linear transform l(x, y) such that

$$\lim_{(x,y)\longrightarrow(0,0)} \frac{\|f(1+x,y) - f(1,0) - l(x,y)\|}{\|(x,y)\|} = 0.$$
(7)

By the representation theory of linear functions all we need to do is to find two numbers $l_1, l_2 \in \mathbb{R}$ such that

$$\lim_{(x,y)\longrightarrow(0,0)} \frac{\|f(1+x,y) - f(1,0) - (l_1x + l_2y)\|}{\|(x,y)\|} = 0.$$
(8)

Using the explicit formula for f, the above ratio reduces to

$$\frac{\left|\left[a\left(1+x\right)^{2}+b\left(1+x\right)y+c\,y^{2}\right]-a-\left(l_{1}\,x+l_{2}\,y\right)\right|}{\left(x^{2}+y^{2}\right)^{1/2}}.$$
(9)

Simplifying, we obtain

$$\frac{|2\,a\,x + a\,x^2 + b\,y + b\,x\,y + c\,y^2 - (l_1\,x + l_2\,y)|}{(x^2 + y^2)^{1/2}}.$$
(10)

Now it is clear that we should take $l_1 = 2 a$ and $l_2 = b$. In the following we prove that

$$\lim_{(x,y)\longrightarrow(0,0)} \frac{|a\,x^2 + b\,x\,y + c\,y^2|}{(x^2 + y^2)^{1/2}} = 0.$$
(11)

This is easy since we have

$$a x^2 \leq |a| (x^2 + y^2);$$
 $b x y \leq \frac{|b|}{2} (x^2 + y^2);$ $c y^2 \leq |c| (x^2 + y^2)$ (12)

which means

$$\frac{|a\,x^2 + b\,x\,y + c\,y^2|}{(x^2 + y^2)^{1/2}} \leqslant \left(|a| + |c| + \frac{|b|}{2}\right)(x^2 + y^2)^{1/2}.$$
(13)

Now we clearly have

$$\lim_{(x,y)\longrightarrow(0,0)} \left(|a| + |c| + \frac{|b|}{2} \right) (x^2 + y^2)^{1/2} = \lim_{(x,y)\longrightarrow(0,0)} 0 = 0$$
(14)

and then

$$\lim_{(x,y)\longrightarrow(0,0)} \frac{|a\,x^2 + b\,x\,y + c\,y^2|}{(x^2 + y^2)^{1/2}} = 0 \tag{15}$$

follows from Squeeze Theorem.

Therefore f is differentiable at (1,0) with derivative

$$Df(1,0)(x,y) = 2 a x + b y.$$
(16)

Remark 6. Note that

- 1. Checking differentiability by definition is surprisingly complicated for such a simple quadratic function;
- 2. If we simply fix y and treat f(x, y) as a function of x along, its derivative at 1 would be 2 a + b y; On the other hand, fixing x and taking derivative of f(x, y) as a function of y alone at 0 gives b x. Now evaluating them at x = 1 and y = 0, we obtain 2 a and b. This is no coincidence!

Exercise 2. Prove that $f: \mathbb{R}^N \mapsto \mathbb{R}$ defined by

$$f(x_1, \dots, x_N) := \sum_{i,j=1}^N a_{ij} x_i x_j \tag{17}$$

is differentiable at every $\boldsymbol{x}_0 \in \mathbb{R}^N$ and calculate the derivative. What is the matrix representation of $Df(\boldsymbol{x}_0)$?

Theorem 7. Let $f: \mathbb{R}^N \to \mathbb{R}^M$ be differentiable at $x_0 \in \mathbb{R}^N$. Then f is continuous at x_0 .

Exercise 3. Prove the above theorem.

Properties of the differential

Proposition 8. If the differential exists, then it is unique.

Exercise 4. Prove the above theorem.

Lemma 9. (Reduction to scalar functions) Let $\boldsymbol{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$ be written as $\boldsymbol{f}(\boldsymbol{x}) = \begin{pmatrix} f_1(\boldsymbol{x}) \\ \vdots \\ f_N(\boldsymbol{x}) \end{pmatrix}$. Then \boldsymbol{f} is differentiable at $\boldsymbol{x}_0 \in \mathbb{R}^N$ if and only if $f_1, ..., f_M$ are all differentiable at \boldsymbol{x}_0 . Furthermore we have

$$D\boldsymbol{f}(\boldsymbol{x}_0) = \begin{pmatrix} Df_1(\boldsymbol{x}_0) \\ \vdots \\ Df_N(\boldsymbol{x}_0) \end{pmatrix}.$$
 (18)

Exercise 5. Prove the above theorem.

Theorem 10. (Arithmetics) Let $a \in \mathbb{R}$. Let $f, g: \mathbb{R}^N \mapsto \mathbb{R}$ be differentiable at $\mathbf{x}_0 \in \mathbb{R}^N$. Then so are $f \pm g$, a f, f g and f/g (as long as $g(\mathbf{x}_0) \neq 0$ in the last case), and furthermore

$$D(f \pm g)(\mathbf{x}_0) = Df(\mathbf{x}_0) \pm Dg(\mathbf{x}_0); \qquad D(a f)(\mathbf{x}_0) = a (Df(\mathbf{x}_0));$$
(19)

$$D(fg)(x_0) = f(x_0) Dg(x_0) + g(x_0) Df(x_0);$$
(20)

$$D(f/g)(\boldsymbol{x}_0) = g(\boldsymbol{x}_0)^{-2} [g(\boldsymbol{x}_0) D f(\boldsymbol{x}_0) - f(\boldsymbol{x}_0) D g(\boldsymbol{x}_0)].$$
(21)

Exercise 6. Prove the above lemma.

Exercise 7. Prove the corresponding results for $f, g: \mathbb{R}^N \mapsto \mathbb{R}^M$.

Remark 11. Note that thanks to Lemma 9, we haven't lost any generality here.

Theorem 12. (Chain rule) Let $f: \mathbb{R}^N \to \mathbb{R}^M$ be differentiable at $x_0 \in \mathbb{R}^N$ and $g: \mathbb{R}^M \to \mathbb{R}^K$ be differentiable at $y_0 := f(x_0)$. Then the composite function $g \circ f: \mathbb{R}^N \to \mathbb{R}^K$ is differentiable at x_0 with derivative

$$D(\boldsymbol{g} \circ \boldsymbol{f})(\boldsymbol{x}_0) = (D\boldsymbol{g}(\boldsymbol{y}_0)) \circ (D\boldsymbol{f}(\boldsymbol{x}_0))$$
(22)

Proof. We need to show

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x})) - \boldsymbol{g}(\boldsymbol{y}_0) - [D\boldsymbol{g}(\boldsymbol{y}_0) \circ D\boldsymbol{f}(\boldsymbol{x}_0)](\boldsymbol{x} - \boldsymbol{x}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = 0.$$
(23)

To make the presentation easier to understand, we denote the two linear transformations $Dg(y_0)$ and $Df(x_0)$ by L_g, L_f . Now writing

$$g(f(x)) - g(y_0) - L_g(L_f(x - x_0)) = g(f(x)) - g(y_0) - L_g(f(x) - y_0) + L_g(f(x) - y_0 - L_f(x - x_0)).$$
(24)

By triangle inequality and property of limit all we need to show are

$$\lim_{\boldsymbol{x} \longrightarrow \boldsymbol{x}_0} \frac{\|\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x})) - \boldsymbol{g}(\boldsymbol{y}_0) - L_g(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = 0$$
(25)

and

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|L_g(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0 - L_f(\boldsymbol{x} - \boldsymbol{x}_0))\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = 0.$$
(26)

• The first limit.

We define the function

$$H(\boldsymbol{x}) := \begin{cases} 0 & \boldsymbol{f}(\boldsymbol{x}) = \boldsymbol{y}_0 := \boldsymbol{f}(\boldsymbol{x}_0) \\ \frac{\|\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x})) - \boldsymbol{g}(\boldsymbol{y}_0) - L_g(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} & \boldsymbol{f}(\boldsymbol{x}) \neq \boldsymbol{y}_0 := \boldsymbol{f}(\boldsymbol{x}_0) \end{cases}$$
(27)

Then one can write

$$H(\boldsymbol{x}) = \frac{\|\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x})) - \boldsymbol{g}(\boldsymbol{y}_0) - L_g(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0)\|}{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0\|} \cdot \frac{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|}$$
(28)

and prove $\lim_{\boldsymbol{x}\longrightarrow\boldsymbol{x}_0}H(\boldsymbol{x})=0$. (See exercise below).

• The second limit.

Due to differentiability of f at x_0 we have

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0 - L_f(\boldsymbol{x} - \boldsymbol{x}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = 0$$
(29)

which means the function:

$$F(x) := \frac{f(x) - y_0 - L_f(x - x_0)}{\|x - x_0\|}$$
(30)

satisfies

$$\lim_{\boldsymbol{x}\longrightarrow\boldsymbol{x}_0} \boldsymbol{F}(\boldsymbol{x}) = \boldsymbol{0}.$$
(31)

Now taking advantage of the continuity of linear functions, we have

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|L_g(\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{y}_0 - L_f(\boldsymbol{x} - \boldsymbol{x}_0))\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} = \lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \|L_g(\boldsymbol{F}(\boldsymbol{x}))\| = \|L_g(\boldsymbol{0})\| = 0.$$
(32)

Thus ends the proof.

Exercise 8. Let $l: \mathbb{R}^N \mapsto \mathbb{R}^M$ be a linear function. Prove that

$$\sup_{\boldsymbol{x}\in\mathbb{R}^{N},\boldsymbol{x}\neq\boldsymbol{0}}\frac{\|\boldsymbol{l}(\boldsymbol{x})\|}{\|\boldsymbol{x}\|}<+\infty.$$
(33)

(Hint: Use the matrix representation of $\boldsymbol{l}).$

Exercise 9. Let $\boldsymbol{f} \colon \mathbb{R}^N \mapsto \mathbb{R}^M$ be differentiable at $\boldsymbol{x}_0 \in \mathbb{R}^N$. Prove that

$$\limsup_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0)\|}{\|\boldsymbol{x} - \boldsymbol{x}_0\|} < +\infty.$$
(34)

Remark 13. If A is the matrix representation of $Dg(y_0)$ and B is the matrix representation of $Df(x_0)$, then the matrix representation of $D(g \circ f)(x_0)$ is AB.

Exercise 10. Let u(x, t) = f(x - t) for differentiable functions $f: \mathbb{R} \mapsto \mathbb{R}$. Prove that u is differentiable, and furthermore u satisfies the following partial differential equation:

$$\frac{\partial u}{\partial x} + \frac{\partial u}{\partial t} = 0. \tag{35}$$

Exercise 11. (Change of variables) Let f(x, y) be differentiable. Define

$$u(r,\theta) := f(r\cos\theta, r\sin\theta). \tag{36}$$

Prove

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = \left(\frac{\partial u}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial u}{\partial \theta}\right)^2.$$
(37)

Question 14. Critique the following statement:

A function $\mathbf{f}: \mathbb{R}^N \mapsto \mathbb{R}^M$ is differentiable at $\mathbf{x}_0 \in \mathbb{R}^N$ if and only if there is a linear function $\mathbf{l}: \mathbb{R}^N \mapsto \mathbb{R}^M$ such that for all other linear functions $\mathbf{L}: \mathbb{R}^N \mapsto \mathbb{R}^M$,

$$\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} \frac{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0) - \boldsymbol{l}(\boldsymbol{x} - \boldsymbol{x}_0)\|}{\|\boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{f}(\boldsymbol{x}_0) - \boldsymbol{L}(\boldsymbol{x} - \boldsymbol{x}_0)\|} = 0.$$
(38)

If you think it is true, provide a proof; If you think it is false, construct a counter-example.

Question 15. (Euler's Theorem) $f: \mathbb{R}^N \mapsto \mathbb{R}$ is said to be homogeneous of degree m if

$$f(t\,\boldsymbol{x}) = t^m \, f(\boldsymbol{x}). \tag{39}$$

- a) Give examples of $f: \mathbb{R}^3 \mapsto \mathbb{R}$ that are homogeneous of degrees 1, 3, -1.
- b) Assume f is differentiable. Then it satisfies the following partial differential equation:

$$x_1 \frac{\partial f}{\partial x_1} + \dots + x_N \frac{\partial f}{\partial x_N} = m f.$$
(40)

c) Prove that if f is differentiable and satisfies the above equation, then f must be homogeneous.