Heine-Borel Theorem

Heine-Borel Theorem completely characterizes compact sets in RY.
Lemma 1. If E CRY is compact, then it is closed.

Proof. We try to prove E€ is open. Take any « ¢ E. Consider the family of open sets
{(B(z,1/n))9neN}. (1)

whose union is R"” — {&} D E. Thus there is a finite cover. O
Exercise 1. Complete the above proof.

Lemma 2. If E CRY is compact, then it is bounded.

Proof. Left as exercise. O
Exercise 2. Prove the above lemma.

Lemma 3. If E CRY is bounded and closed, then E is compact.

Proof. In light of Lemma 7, it suffices to show the compactness of closed intervals. In the following we take

E =1 to be a closed interval.

Let W be an open covering of I that does not have a finite subcover. Bi-secting I into 2V closed subintervals
as in the proof of Theorem 7|, at least one of them, denote it by I, cannot be covered by finitely many open
sets from . Do this again and again, we have a sequence of nested closed intervals I D I; O I3 D --- , none
of the I’s can be covered by finitely many open sets from W. By Nested Intervals Theorem we know there

is @g € I such that {xo} =N5L11,.

Now because W is an open covering of I, there is an open set U € W such that o€ U. Consequently there
is 7 >0 such that B(xg,r) CU. Now by construction there is n € N such that I,, C B(xo,r) CU which means
I,, can be covered by a single open set from W. Contradiction. 0

Exercise 3. Consider the set of all sequences of real numbers, turned into a inner product space through natural
addition/subtraction/scalar multiplication/inner product:

{zn} £ {yn}:={zn L yn}; a{zn}:={az,} (2)
{x’fl}'{yn}:zz TnYn =T1Y1+T2y2+ . (3)
n=1

Then we can define the [2 norm as:
[{zn} == {@n} - {z D2 (4)

The definition of open balls and open sets now can be carried out exactly the same as in RY. This is the intuitive
genearlization of RY to the case N = oo. This infinite dimensional Euclidean space is denoted [2.

a) Give definition of open, closed, compact, bounded sets in I2.

b) Prove that if A CI? is compact, then A is bounded and closed.



c) Find a bounded and closed set that is not compact. Justify your answer.

Summarizing the above three lemmas, we reach the following theorem.

Theorem 4. (Heine-Borel) Let K CRY. Then

K is compact <= K 1is closed and bounded. (5)

Compactness and convergent subsequences

Theorem 5. Let K C RYN. Then K is compact <= Every sequence in K has a convergent subsequence
whose limit is in K.

Proof.

—. By Heine-Borel, K is compact => K is bounded and closed. Now if the sequence as a set in RY only
has finitely many points, the claim is obvious; Otherwise we apply Bolzano-Weierstrass to the set {x,} to
obtain the existence of at least one cluster point ag. Then there is a subsequence converging to ¢ (see the
exercise below). Finally, since K is closed, o€ K.

<. Thanks to Heine-Borel we only need to show K is closed and bounded. Both are easy and left as
exercises. 0

Exercise 4. Let {x,} be a sequence in RY. Denote by A the set {x,, }. Prove that if xg is a cluster point of A, then there
is a subsequence @, — .

Exercise 5. Let K C RY. Prove that if every sequence in K has a convergent subsequence, then K must be bounded.

Exercise 6. Let K C RN. Prove that if every sequence in K has a convergent subsequence whose limit is in K, then K
must be closed.

Exercise 7. Let K CRY. Then K is compact if and only if any infinite subset A C K has a cluster point @ € K.

Further study of compactness

Properties of compact sets

The following is a generalization of Nested Intervals Theorem.

Theorem 6. (Nested Compact Sets) Let {K,,} be a sequence of nonempty compact sets in RN satisfying
K1 D KyD Ks---. Then N1 K, :ﬁ .

Proof. Assume otherwise. Then {K};} is an open cover of K. Since K7 is compact, there is a finite subcover:
KiCK; UK, U---UK[ . Now note that since K; D K32 K3---, Kf C K§ C--- which means

KiCK; UK;, U UKS =K; (6)

This leads to K1 N K,,,, =@&. Together with K,,  C K; we conclude K,, = @&. Contradiction. [l

Exercise 8. From the proof it seems that the theorem can be generalized as follows:

Let {K,} be a sequence of closed sets in RY satisfying K1 D K2 D K3--- with K7 compact. Then N5 K, # &.



Is this really a generalization? Justify your answer.
Theorem 7. Let E, F be compact sets. Then dist(E,F)>0<= FENF=g.

Proof.
—. This is trivial.

<. AsENF =g, EC F° Note that F¢ is open. Now for any x € E, there is r = r(x) > 0 such that
B(x,r) C F°. We have an oper covering of E:

ECUmeEB<w, r(;)). (7)

By compactness of F there is a finite subcovering:

EcB(ml,%)u---uB(:cn,%’). 8)

Take d := min {%, s %"} Now for any x € E, there is k € {1, 2, ..., n} such that x € B(:ck, %) Now
B(zg, i) C Fe= F C By, )" = {y € R"| |y —@x|| =74} As a consequence we have ||z — y|| > 5 >d
(see the following exercise). Note that this holds for any @ € E, y € F'. Therefore dist(E, F') > d >0 and the
proof ends. O
Exercise 9. Let @ € B(xg, 1) and y € B(xg, r2)¢. Prove that ||& — y|| > max{0,ro —r}.
Exercise 10. Let E, F CIRYN be closed. Further assume E is compact. Prove that dist(E,F)>0<= ENF=g.

Exercise 11. Find two closed sets F, F € R such that ENF = & but dist(F, F) =0.

Exercise 12. Let E be compact and F be closed. Prove that there are g € E, yo € F such that dist(xo, yo) :=
[leo — yol| =dist(E, F). Does the claim still hold if both E, F' are only closed? Justify your answer.

Continuous functions on compact sets
Theorem 8. Let f: RN — RM be continuous. Let E CRY be compact. Then f(E) is compact.

Proof. Take any open covering W of f(E). As f is continuous, f~!(U) is open for any U € W. So
{f~1(U)|U e W} is an open covering of E. But E is compact so there is a finite subcovering:

EC fH Un)U-U fHUy). (9)

As f(f Y (Ur)) C Uy, we see that f(E)CU U---UU,. .

Exercise 13. Find a discontinuous function f such that £ compact = f(F) compact.

Exercise 14. Let f: RY — R be continuous, and E C RN compact. Then there are @max, Tmin € E such that

Ve ek, f(®max) 2 f(x) 2 f(€min)- (10)

That is f reaches its maximum and minimum. Try to prove this in one line using the above theorem.

Give a counterexample for £ bounded but not compact.

Exercise 15. Let A:={(z,y)||z|+|y| <1} and B:={(z,y)| |z|+ |y| < 1}. Prove that there can be no function f: A— B
that is both continuous and onto.



Uniform continuity

Theorem 9. (Uniform continuity) Let f: RY — RM be continuous. Let E CRY be compact. Then f is
uniformly continuous on E, that is for any € >0, there is § >0 such that

Ve, y e E, |z -yl <d—=|f(z)- fly)ll<e (11)

Proof. Let ¢ >0 be arbitrary. Then at each x € E, there is § = §(x) > 0 such that

VyeE, |lo—y| <i(x)=|f(z)- fy)ll <e (12)
The balls B (:c, @) then form an open covering of E. Since E is compact, there is a finite subcovering
EQB(wl,%>U---UB<mn,%’>. (13)

Take 5::%min {61,...,6,}. Then for any x,y such that ||x — y| <J, there must be one k € {1,...,n} such
that @,y € B(xy,dr) (exercise). Consequently || f(x) — f(y)|| <e and proof ends. O

Exercise 16. Prove the claim “Then for any @, y such that || — y|| < §, there must be one k € {1, ..., n} such that «,
y € B(=xy, 0k)” in the above proof.



