
Heine-Borel Theorem

Heine-Borel Theorem completely characterizes compact sets in R
N.

Lemma 1. If E ⊆R
N is compact, then it is closed.

Proof. We try to prove Ec is open. Take any x � E. Consider the family of open sets

{(B(x, 1/n))cO n∈N}. (1)

whose union is Rn −{x}⊇E. Thus there is a finite cover. �

Exercise 1. Complete the above proof.

Lemma 2. If E ⊆R
N is compact, then it is bounded.

Proof. Left as exercise. �

Exercise 2. Prove the above lemma.

Lemma 3. If E ⊆R
N is bounded and closed, then E is compact.

Proof. In light of Lemma ?, it suffices to show the compactness of closed intervals. In the following we take
E = I to be a closed interval.

Let W be an open covering of I that does not have a finite subcover. Bi-secting I into 2N closed subintervals
as in the proof of Theorem ?, at least one of them, denote it by I1, cannot be covered by finitely many open
sets from W . Do this again and again, we have a sequence of nested closed intervals I ⊇ I1⊇ I2⊇
 , none
of the Ik’s can be covered by finitely many open sets from W . By Nested Intervals Theorem we know there
is x0∈ I such that {x0}=∩n=1

∞ In.

Now because W is an open covering of I, there is an open set U ∈W such that x0∈U . Consequently there
is r >0 such that B(x0, r)⊆U . Now by construction there is n∈N such that In⊂B(x0, r)⊆U which means
In can be covered by a single open set from W . Contradiction. �

Exercise 3. Consider the set of all sequences of real numbers, turned into a inner product space through natural

addition/subtraction/scalar multiplication/inner product:

{xn}± {yn}7 {xn ± yn}; a {xn}7 {a xn} (2)

{xn} · {yn}7 ∑

n=1

∞

xn yn =x1 y1 + x2 y2 +
 . (3)

Then we can define the l2 norm as:

‖{xn}‖7 ({xn} · {xn})
1/2. (4)

The definition of open balls and open sets now can be carried out exactly the same as in R
N. This is the intuitive

genearlization of RN to the case N =∞. This infinite dimensional Euclidean space is denoted l2.

a) Give definition of open, closed, compact, bounded sets in l2.

b) Prove that if A ⊆ l2 is compact, then A is bounded and closed.
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c) Find a bounded and closed set that is not compact. Justify your answer.

Summarizing the above three lemmas, we reach the following theorem.

Theorem 4. (Heine-Borel) Let K ⊆R
N. Then

K is compact� K is closed and bounded. (5)

Compactness and convergent subsequences

Theorem 5. Let K ⊆ R
N. Then K is compact � Every sequence in K has a convergent subsequence

whose limit is in K.

Proof.� . By Heine-Borel, K is compact� K is bounded and closed. Now if the sequence as a set in R
N only

has finitely many points, the claim is obvious; Otherwise we apply Bolzano-Weierstrass to the set {xn} to
obtain the existence of at least one cluster point x0. Then there is a subsequence converging to x0 (see the
exercise below). Finally, since K is closed, x0∈K.� . Thanks to Heine-Borel we only need to show K is closed and bounded. Both are easy and left as
exercises. �

Exercise 4. Let {xn} be a sequence in RN. Denote by A the set {xn}. Prove that if x0 is a cluster point of A, then there

is a subsequence xnk
� x0.

Exercise 5. Let K ⊆R
N. Prove that if every sequence in K has a convergent subsequence, then K must be bounded.

Exercise 6. Let K ⊆R
N. Prove that if every sequence in K has a convergent subsequence whose limit is in K, then K

must be closed.

Exercise 7. Let K ⊆R
N. Then K is compact if and only if any infinite subset A ⊆K has a cluster point x∈K.

Further study of compactness

Properties of compact sets

The following is a generalization of Nested Intervals Theorem.

Theorem 6. (Nested Compact Sets) Let {Kn} be a sequence of nonempty compact sets in R
N satisfying

K1⊇K2⊇K3
 . Then ∩n=1
∞ Kn� ∅.

Proof. Assume otherwise. Then {Kn
c} is an open cover of K1. Since K1 is compact, there is a finite subcover:

K1⊆Kn1

c ∪Kn2

c ∪
 ∪Knm

c . Now note that since K1⊇K2⊇K3
 , K1
c ⊆K2

c ⊆
 which means

K1⊆Kn1

c ∪Kn2

c ∪
 ∪Knm

c = Knm

c (6)

This leads to K1∩Knm
= ∅. Together with Knm

⊆K1 we conclude Knm
= ∅. Contradiction. �

Exercise 8. From the proof it seems that the theorem can be generalized as follows:

Let {Kn} be a sequence of closed sets in R
N satisfying K1⊇K2⊇K3
 with K1 compact. Then ∩n=1

∞ Kn� ∅.
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Is this really a generalization? Justify your answer.

Theorem 7. Let E, F be compact sets. Then dist(E, F )> 0� E ∩F = ∅.

Proof.� . This is trivial.� . As E ∩ F = ∅, E ⊆ F c. Note that F c is open. Now for any x ∈ E, there is r = r(x) > 0 such that
B(x, r)⊆F c. We have an oper covering of E:

E ⊂∪x∈EB

(

x,
r(x)

2

)

. (7)

By compactness of E there is a finite subcovering:

E ⊂B
(

x1,
r1

2

)

∪
 ∪B
(

xn,
rn

2

)

. (8)

Take d 7 min
{

r1

2
, 	 ,

rn

2

}

. Now for any x ∈ E, there is k ∈ {1, 2, 	 , n} such that x ∈ B
(

xk,
rk

2

)

. Now

B(xk, rk)⊆ F c� F ⊆B(xk, rk)
c = {y ∈R

N O ‖y −xk‖> rk}. As a consequence we have ‖x − y‖>
rk

2
> d

(see the following exercise). Note that this holds for any x∈E, y ∈F . Therefore dist(E, F )> d > 0 and the
proof ends. �

Exercise 9. Let x∈B(x0, r1) and y∈B(x0, r2)
c. Prove that ‖x− y‖>max{0, r2− r1}.

Exercise 10. Let E, F ⊆R
N be closed. Further assume E is compact. Prove that dist(E, F ) > 0� E ∩F = ∅.

Exercise 11. Find two closed sets E, F ∈R
N such that E ∩F = ∅ but dist(E, F ) = 0.

Exercise 12. Let E be compact and F be closed. Prove that there are x0 ∈ E, y0 ∈ F such that dist(x0, y0) 7
‖x0− y0‖=dist(E, F ). Does the claim still hold if both E, F are only closed? Justify your answer.

Continuous functions on compact sets

Theorem 8. Let f :RN� R
M be continuous. Let E ⊆R

N be compact. Then f(E) is compact.

Proof. Take any open covering W of f (E). As f is continuous, f−1(U) is open for any U ∈ W . So
{f−1(U)O U ∈W } is an open covering of E. But E is compact so there is a finite subcovering:

E ⊆ f−1(U1)∪
 ∪ f−1(Un). (9)

As f(f−1(Uk))⊆Uk, we see that f (E)⊆U1∪
 ∪Un. �

Exercise 13. Find a discontinuous function f such that E compact� f(E) compact.

Exercise 14. Let f :RN�R be continuous, and E ⊂R
N compact. Then there are xmax, xmin ∈E such that

∀x∈E, f(xmax) > f(x) > f(xmin). (10)

That is f reaches its maximum and minimum. Try to prove this in one line using the above theorem.

Give a counterexample for E bounded but not compact.

Exercise 15. Let A7 {(x, y)O |x|+ |y |61} and B7 {(x, y)O |x|+ |y |< 1}. Prove that there can be no function f:A� B

that is both continuous and onto.
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Uniform continuity

Theorem 9. (Uniform continuity) Let f :RN� R
M be continuous. Let E ⊆R

N be compact. Then f is

uniformly continuous on E, that is for any ε > 0, there is δ > 0 such that

∀x, y ∈E, ‖x− y‖< δ� ‖f(x)− f(y)‖< ε. (11)

Proof. Let ε > 0 be arbitrary. Then at each x∈E, there is δ = δ(x)> 0 such that

∀y ∈E, ‖x− y‖< δ(x)� ‖f(x)− f(y)‖< ε. (12)

The balls B
(

x,
δ(x)

2

)

then form an open covering of E. Since E is compact, there is a finite subcovering

E ⊆B

(

x1,
δ1

2

)

∪
 ∪B

(

xn,
δn

2

)

. (13)

Take δ7 1

2
min {δ1,	 , δn}. Then for any x, y such that ‖x− y‖< δ, there must be one k ∈ {1,	 , n} such

that x, y ∈B(xk, δk) (exercise). Consequently ‖f (x)− f(y)‖< ε and proof ends. �

Exercise 16. Prove the claim “Then for any x, y such that ‖x − y‖ < δ, there must be one k ∈ {1, 	 , n} such that x,

y∈B(xk, δk)” in the above proof.
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