Compactness

Bolzano-Weierstrass

Proposition 1. (Nested intervals) Let $\{I_n\}$ be a sequence of closed intervals satisfying $I_1 \supseteq I_2 \supseteq I_3 \supseteq \cdots$. Then $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Proof. Left as exercise.

Definition 2. A set $E \subseteq \mathbb{R}^N$ is bounded if and only if there is R > 0 such that $E \subseteq B(\mathbf{0}, R)$.

Exercise 1. Prove that E is bounded if and only if there is an interval $I = [a_1, b_1] \times \cdots \times [a_N, b_N]$ with all a_i, b_i finite such that $E \subseteq I$.

Theorem 3. (Bolzano-Weierstrass) Every bounded infinite set $A \subseteq \mathbb{R}^n$ has a cluster point.

Proof. In light of the above exercise, we can assume $A \subseteq I$ for some interval $I = [a_1, b_1] \times \cdots \times [a_N, b_N]$. Divide I into 2^N closed subintervals by bi-secting each interval. Since A is infinite, at least one of these subintervals still contain infinitely many points from A. Denote it by I_1 . Do the same thing to I_1 to obtain I_2 , and so on.

This way we obtain a sequence of nested intervals $I \supseteq I_1 \supseteq I_2 \cdots$. By the Nested Intervals Theorem we know there is $x_0 \in \bigcap_{k=1}^{\infty} I_k$. We claim that it is a cluster point of A.

Assume otherwise. Then there is r > 0 such that $(B(\boldsymbol{x}_0, r) - \{\boldsymbol{x}_0\}) \cap A = \emptyset$. But since r > 0 there is n > 0 such that $I_n \subset B(\boldsymbol{x}_0, r)$. Contradiction.

Exercise 2. From the proof we know that $A \cap I_k \neq \emptyset$ for any k. Can we conclude that $A \cap (\bigcap_{k=1}^{\infty} I_k) \neq \emptyset$? Justify your answer.

Exercise 3. What is wrong with the following proof?

Divide I into two closed subintervals $I = J \cup K$. Since A is infinite, at least one of the two intersections $A \cap J$, $A \cap K$ is infinite. Denote it by I_1 . Now divide I_1 into two subintervals and repeat the argument, we obtain I_2 . Do this again and again we have a sequence of nested intervals $I \supseteq I_1 \supseteq I_2 \supseteq \cdots$. Thanks to Nested Intervals Theorem there is $\boldsymbol{x}_0 \in \bigcap_{k=1}^{\infty} I_k$ and it is the desired cluster point.

Exercise 4. Let $A = \{\boldsymbol{x}_n\} \subseteq \mathbb{R}^N$ be a sequence of points. Let $\boldsymbol{x}_0 \in \mathbb{R}^N$ be such that there is a subsequence $\boldsymbol{x}_{n_k} \longrightarrow \boldsymbol{x}_0$. Explain why \boldsymbol{x}_0 may not be a cluster point of A.

Problem 1. Is it possible to prove Theorem 3 using the one dimensional Bolzano-Weierstrass theorem? Explore this possibility and justify your claims.

Definition of compact sets

Definition 4. A set $E \subseteq \mathbb{R}^N$ is compact if and only if every open cover of it has a finite sub-cover. In other words, if there is a collection W of open sets such that

$$E \subseteq \bigcup_{A \in W} A \tag{1}$$

then there is $n \in \mathbb{N}$ and $A_1, ..., A_n \in W$ such that

$$E \subseteq \bigcup_{i=1}^{n} A_i. \tag{2}$$

Example 5. Let $E = \{x_0\}$ be just one point. Prove E is compact.

Proof. Let W be any collection of open sets covering E, that is

$$E \subseteq \bigcup_{A \in W} A. \tag{3}$$

Then by definition of set union:

$$\cup_{A \in W} A := \{ \boldsymbol{x} | \exists A \in W, \quad \boldsymbol{x} \in A \}$$

$$\tag{4}$$

there is one $A_1 \in W$ such that $x_0 \in A_1$. This means $E = \{x_0\} \subseteq A_1$ and we have found our finite sub-cover. \Box

Exercise 5. Let $E = \{x_1, ..., x_k\}$ be a set of finitely many points in \mathbb{R}^n . Prove that E is compact.

Example 6. Let $E = \left\{ \frac{1}{n} | n \in \mathbb{N} \right\}$. Then E is not compact.

Proof. Consider the following collection of open sets:

$$W := \{E_n | n \in \mathbb{N}\} \text{ with } E_n := \left(\frac{1}{n} - \frac{1}{2n(n+1)}, \frac{1}{n} + \frac{1}{2n(n-1)}\right).$$
(5)

Then clearly each E_n is open and $\frac{1}{n} \in E_n$ for every $n \in \mathbb{N}$. Therefore

$$E \subseteq \bigcup_{n=1}^{\infty} E_n. \tag{6}$$

Now prove by contradiction. Take any finite number of sets from $W: E_{n_1}, ..., E_{n_k}$. We show that

$$E \not\subseteq E_{n_1} \cup E_{n_2} \cup \dots \cup E_{n_k}.$$
(7)

Take $n \notin \{n_1, ..., n_k\}$. Then for each $l \in \{1, 2, ..., k\}$, we have the following two situations:

• $n > n_k$. In this case we have

$$\frac{1}{n_k} - \frac{1}{n} \ge \frac{1}{n_k} - \frac{1}{n_k + 1} = \frac{1}{n_k (n_k + 1)} > \frac{1}{2 n_k (n_k + 1)}$$
(8)

which means

$$\frac{1}{n} \notin E_{n_k};\tag{9}$$

• $n < n_k$. Similarly we have

$$\frac{1}{n} - \frac{1}{n_k} \ge \frac{1}{n_k - 1} - \frac{1}{n_k} \ge \frac{1}{2 n_k (n_k - 1)} \Longrightarrow \frac{1}{n} \notin E_{n_k}.$$
(10)

Thus

$$E \ni \frac{1}{n} \notin E_{n_1} \cup E_{n_2} \cup \dots \cup E_{n_k} \Longrightarrow E \not\subseteq E_{n_1} \cup E_{n_2} \cup \dots \cup E_{n_k}.$$
(11)

So there is no finite sub-cover and E is not compact.

Exercise 6. Let $E = \mathbb{N}$. Prove that E is not compact.

Exercise 7. Let E = (a, b] and half-open-half-closed interval in \mathbb{R} . Prove that E is not compact.

Example 7. Let $E = \{0\} \cup \{\frac{1}{n} | n \in \mathbb{N}\}$. Prove *E* is compact.

Proof. Let W be any open cover of E. Then there is $E_0 \in W$ such that $0 \in E_0$. As E_0 is open, there is $N \in \mathbb{N}$ such that

$$\left(-\frac{1}{N},\frac{1}{N}\right) \subseteq E_0. \tag{12}$$

Now choose E_n such that

$$\frac{1}{n} \in E_n \tag{13}$$

for n = 1, 2, ..., N. We claim

$$E \subseteq \bigcup_{n=0}^{N} E_n. \tag{14}$$

We only need to verify that $\frac{1}{n} \in \bigcup_{n=0}^{N} E_n$ for all n > N. But for such n we have

$$\frac{1}{n} \in \left(-\frac{1}{N}, \frac{1}{N}\right) \subseteq E_0. \tag{15}$$

Thus ends the proof.

Exercise 8. Let $E \subseteq \mathbb{R}^N$. Prove the following.

E is compact if and only if for any collection W of closed sets, if $E \cap (\cap_{A \in W} A) = \emptyset$, then there are finitely many $A_1, ..., A_n \in W$ such that $E \cap (\cap_{k=1}^n A_k) = \emptyset$.

Exercise 9. Let $E \subseteq \mathbb{R}^N$ be compact. Let W be an open cover of E. Then there is r > 0, such that if $B \subseteq A$ is a ball of radius r, then there is one single open set $O \in W$, such that $B \subseteq O$.