
Compactness

Bolzano-Weierstrass

Proposition 1. (Nested intervals) Let {In} be a sequence of closed intervals satisfying I1⊇ I2⊇ I3⊇
 .

Then ∩n=1
∞ In� ∅.

Proof. Left as exercise. �

Definition 2. A set E ⊆R
N is bounded if and only if there is R > 0 such that E ⊆B(0, R).

Exercise 1. Prove that E is bounded if and only if there is an interval I = [a1, b1]×
 × [aN , bN] with all ai, bi finite such

that E ⊆ I.

Theorem 3. (Bolzano-Weierstrass) Every bounded infinite set A ⊆R
n has a cluster point.

Proof. In light of the above exercise, we can assume A⊆ I for some interval I =[a1, b1]×
 × [aN , bN]. Divide

I into 2N closed subintervals by bi-secting each interval. Since A is infinite, at least one of these subintervals
still contain infinitely many points from A. Denote it by I1. Do the same thing to I1 to obtain I2, and so on.

This way we obtain a sequence of nested intervals I ⊇ I1⊇ I2
 . By the Nested Intervals Theorem we know
there is x0∈∩k=1

∞ Ik. We claim that it is a cluster point of A.

Assume otherwise. Then there is r > 0 such that (B(x0, r)− {x0}) ∩ A = ∅. But since r > 0 there is n > 0
such that In⊂B(x0, r). Contradiction. �

Exercise 2. From the proof we know that A ∩ Ik � ∅ for any k. Can we conclude that A ∩ (∩k=1
∞ Ik) � ∅? Justify your

answer.

Exercise 3. What is wrong with the following proof?

Divide I into two closed subintervals I =J ∪K. Since A is infinite, at least one of the two intersections A∩J ,

A∩K is infinite. Denote it by I1. Now divide I1 into two subintervals and repeat the argument, we obtain I2.

Do this again and again we have a sequence of nested intervals I ⊇ I1 ⊇ I2 ⊇ 
 . Thanks to Nested Intervals

Theorem there is x0∈∩k=1
∞ Ik and it is the desired cluster point.

Exercise 4. Let A = {xn} ⊆R
N be a sequence of points. Let x0 ∈R

N be such that there is a subsequence xnk
� x0.

Explain why x0 may not be a cluster point of A.

———————————————————————————————————————

Problem 1. Is it possible to prove Theorem 3 using the one dimensional Bolzano-Weierstrass theorem? Explore this

possibility and justify your claims.

Definition of compact sets

Definition 4. A set E ⊆R
N is compact if and only if every open cover of it has a finite sub-cover. In other

words, if there is a collection W of open sets such that

E ⊆∪A∈WA (1)

then there is n∈N and A1,	 , An∈W such that

E ⊆∪i=1
n Ai. (2)
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Example 5. Let E = {x0} be just one point. Prove E is compact.

Proof. Let W be any collection of open sets covering E, that is

E ⊆∪A∈WA. (3)

Then by definition of set union:

∪A∈WA7 {xO ∃A∈W , x∈A} (4)

there is one A1∈W such that x0∈A1. This means E ={x0}⊆A1 and we have found our finite sub-cover. �

Exercise 5. Let E = {x1,	 , xk} be a set of finitely many points in R
n. Prove that E is compact.

Example 6. Let E =
{

1

n
O n∈N

}

. Then E is not compact.

Proof. Consider the following collection of open sets:

W 7 {EnO n∈N} with En7 (

1

n
−

1

2 n (n + 1)
,
1

n
+

1

2n (n− 1)

)

. (5)

Then clearly each En is open and
1

n
∈En for every n∈N. Therefore

E ⊆∪n=1
∞ En. (6)

Now prove by contradiction. Take any finite number of sets from W : En1
,	 , Enk

. We show that

E⊆En1
∪En2

∪
 ∪Enk
. (7)

Take n � {n1,	 , nk}. Then for each l ∈{1, 2,	 , k}, we have the following two situations:

• n > nk. In this case we have

1

nk

−
1

n
>

1

nk

−
1

nk + 1
=

1

nk (nk +1)
>

1

2nk (nk + 1)
(8)

which means

1

n
� Enk

; (9)

• n < nk. Similarly we have

1

n
−

1

nk

>
1

nk − 1
−

1

nk

>
1

2 nk (nk − 1)
� 1

n
� Enk

. (10)

Thus

E ∋
1

n
� En1

∪En2
∪
 ∪Enk

� E⊆En1
∪En2

∪
 ∪Enk
. (11)

So there is no finite sub-cover and E is not compact. �

Exercise 6. Let E =N. Prove that E is not compact.
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Exercise 7. Let E = (a, b] and half-open-half-closed interval in R. Prove that E is not compact.

Example 7. Let E = {0}∪
{

1

n
O n∈N

}

. Prove E is compact.

Proof. Let W be any open cover of E. Then there is E0∈W such that 0∈E0. As E0 is open, there is N ∈N

such that
(

−
1

N
,

1

N

)

⊆E0. (12)

Now choose En such that

1

n
∈En (13)

for n = 1, 2,	 , N . We claim

E ⊆∪n=0
N En. (14)

We only need to verify that
1

n
∈∪n=0

N En for all n > N . But for such n we have

1

n
∈

(

−
1

N
,

1

N

)

⊆E0. (15)

Thus ends the proof. �

Exercise 8. Let E ⊆R
N. Prove the following.

E is compact if and only if for any collection W of closed sets, if E ∩ (∩A∈WA) = ∅, then there are finitely

many A1,	 , An ∈W such that E ∩ (∩k=1
n Ak)= ∅.

Exercise 9. Let E ⊆R
N be compact. Let W be an open cover of E. Then there is r > 0, such that if B ⊆A is a ball of

radius r, then there is one single open set O ∈W , such that B ⊆O.
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