
Linear functions and matrices

Linear functions and their representations

Definition 1. (Linear function) A function f :RN� R
M is linear if and only if for every x, y∈R

N and
every a, b∈R,

f (a x + b y) = a f (x)+ b f(y). (1)

Exercise 1. Let f , g:RN� R
M be linear functions and a, b ∈R. Prove that a f + b g is still a linear function from R

N

to R
M.

Exercise 2. Let f :RN� R
M be a linear function, and g:RK� R

L be another linear function. For what N, M , K, L is

the composite function f ◦ g well-defined? For what N, M , K, L is the composite function g ◦ f well-defined? Are they

linear? Justify your answer.

Exercise 3. Let f :RN� R
M be linear. Let k ∈N. Let x1,	 , xk ∈R

N and a1,	 , ak ∈R. Prove that

f(a1 x1 +
 + ak xk)= a1 f(x1)+
 + ak f(xk). (2)

In the following we try to obtain a generic formula for linear functions.

The case M =1

Lemma 2. f :RN� R is linear� there is a∈R
N such that f(x)= a ·x.

Proof. � is trivial and left as exercise.� : Denote by ek=(0,	 ,0,1,0,	 ,0) where 1 appears only at the k-th position. Then clearly for any x∈R
N,

x = (x1,	 , xN)= x1 e1 +
 + xN eN. (3)

Now define

a = (f(e1),	 , f(eN)). (4)

We have

f(x)= f(x1 e1 +
 +xN eN)= x1 f(e1)+
 +xN f(eN)= a ·x. (5)

The proof ends. �

General M

Lemma 3. Let f :RN� R
M be linear. Denote f(x)= (f1(x),	 , fM(x)). Then each fi:R

N� R is linear.

Exercise 4. Prove the above lemma.

Theorem 4. (Representation of linear functions) Let f : RN � R
M be linear. Then there are M N

numbers in R, denoted a11, a12,	 , a1N , a21,	 , a2N ,	 , aM1,	 , aMN, such that

f(x)= (a11x1 +
 + a1N xN ,	 , aM1 x1 +
 + aMN xN). (6)
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Proof. This follows immediately from Lemmas 2 and 3. �

Remark 5. (Relation to matrices) If we denote

A7 a11 
 a1N� �
aM1 
 aMN



, x7 x1�
xN



 (7)

then (6) can be re-written into a matrix-vector product:

f(x) =A x. (8)

Remark 6. From the representation formula above, we see that the properties of linear functions are closely
related to the properties of matrices. In the following we will review the theory of matrices.

A review of matrices

Definition

Definition 7. A real M × N (read: M by N) matrix A is the arrangement of M N real numbers into a
rectangle of M rows and N columns. That is

A =





a11 
 a1N� 
 �
aM 1 
 aMN



 (9)

Denoted A∈R
M×N.

Remark 8. We usually write A = (aij) with the understanding that aij is the number at the intersection
of the i-th row and the j-th column. For example the “Hilbert matrix”:

A =
(

1

i + j

)

(10)

means the matrix reads








1

1 +1

1

1+ 2



1

2 +1

� 
 







. (11)

Matrix operations

• Addition/Subtraction: Let A = (aij), B = (bij) be two matrices of the same size, then their
sum/difference is defined through

A±B7 (aij ± bij). (12)

Exercise 5. Find a matrix C ∈R
M×N such that C + A = A for all A∈R

M×N.

• Scalar multiplication: Let A= (aij), b∈R, then

bA7 ( b aij ). (13)
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Exercise 6. Find a number a∈R such that a A = A for all A∈R
M×N.

Exercise 7. Check that R
M×N with the above addition/subtraction and scalar multiplication becomes a real

linear vector space. Do you spot any relation between it and R
MN?

• Transpose of a matrix: Let A=(aij)∈R
M×N, then its transpose is a matrix ∈R

N×M, defined through

AT =





a11 
 aM 1� 
 �
a1N 
 aMN



= ( aji ). (14)

• Matrix multiplication: Let A = (aij) be an M ×N matrix and B = (bij) be an N ×K matrix. Then
their matrix product A B is defined through

A B: =

(

∑

l=1

N

ail blj

)

= ai1 b1j + ai2 b2j +
 + aiN bNj. (15)

Remark 9. Note that the definition of A B requires: number of columns of A=number of rows of B.

Exercise 8. Let x=







x1�
xN





 and y=







y1�
yN





 be vectors. Prove that x · y= xT y. Note that the left hand side is the

inner product in R
n while the right hand side is matrix multiplication.

Exercise 9. Let A∈R
M×N and B ∈R

N×K. Write A=







a1

T�
aM

T





, B = ( b1 
 bN ) where a1,	 ,aM ,b1,	 ,bN ∈R
N.

Prove that A B =
(

ai
T bj

)

Exercise 10. Prove that matrix multiplication is associative: For any A, B, C,

(A B) C = A (B C) (16)

as long as the products are defined. Thus we can simply write the product as A B C.

Exercise 11. Find two matrices A, B such that both A B and B A are defined but A B � B A.

• Matrix-vector multiplication.

Let A ∈R
M×N and x ∈R

N. Then A x is defined through treating x as an N × 1 matrix. Thus if

A =





a11 
 a1N� 
 �
aM 1 
 aMN



 and x =





x1�
xN



, we have

A x =





a11x1 +
 + a1N xN�
aM1 x1 +
 + aMN xN



. (17)

Remark 10. (Relation between matrices and vectors) If we denote column vectors:

ai =





a1i�
aMi



, (18)

then A is a row of such column vectors:

A = ( a1 
 aN ); (19)

3



We can also denote row vectors

bi
T 7 ( ai1 
 aiN ) (that is bi7 ai1�

aiN



) (20)

Then A is a column of such row vectors:

A =







b1
T�

bM
T





. (21)

With such notation, the transpose of A= ( a1 
 aN ) is







a1
T�

aN
T





.

Exercise 12. Let A,B be matrices such that A B is defined. Prove that BT AT is also defined and BT AT =(A B)T . Explain

how this is s generalization of the property of inner product: x · y = y ·x.

Remark 11. If we write A as a column of row vectors A =







a1
T�

aM
T





, then A x =





a1 ·x�
aM · x



, that is each

component is an inner product.

Relating linear functions and matrices

Recall that every linear function f :RN� R
M has the representation:

f (x)= A x (22)

for some matrix A∈R
M×N .

Lemma 12. Let f , g:RN� R
M be linear. Let A, B be their matrix representations respectively. Then the

the matrix representation for f ± g is A±B.

Proof. We have (f ± g)(x)= f(x)± g(x) =A x±B x =(A±B)x. �

Lemma 13. Let f :RN� R
M be linear with matrix representation A∈R

M×N. Let a∈R. Then the matrix
representation for a f is a A.

Proof. Left as exercise. �

Lemma 14. (Composite functions) Let f : Rn
× R

m and g: Rm � R
k be linear. Let A ∈ R

m×n and
B ∈ R

k×m be their matrix representations respectively. Then the composite function g ◦ f has matrix
representation B A.

Proof. We have

(g ◦ f)(x)= g(f(x))= g(Ax) =B (Ax) = (B A)x. (23)

Thus ends the proof. �
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