Applications of single variable calculus: Additive functions

Positive results

Definition 1. Let $f: \mathbb{R} \mapsto \mathbb{R}$. f is said to be "additive" if the following holds:

$$\forall x, y \in \mathbb{R} \qquad f(x+y) = f(x) + f(y). \tag{1}$$

Remark 2. The above functional equations is called the "Cauchy equation".

Exercise 1. Assume f to be continuous. We try to prove that f(x) = a x for some $a \in \mathbb{R}$ through the following steps.

- a) Prove that f(0) = 0;
- b) Give a reasonable guess of a;
- c) Prove that there is $a \in \mathbb{R}$ such that f(m) = a m for all $m \in \mathbb{Z}$ (that is m is an integer);
- d) Prove that for the same a, f(x) = a x for all $x \in \mathbb{Q}$ (rational);
- e) Prove f(x) = a x through continuity.

Exercise 2. A more clever proof using fundamental theorem of calculus can be carried out as follows.

a) Prove through integrating (1) to obtain

$$f(x) = \int_{x}^{1+x} f(x) \,\mathrm{d}x - \int_{0}^{1} f(y) \,\mathrm{d}y.$$
⁽²⁾

- b) Differentiate with respect to x to reach the conclusion.
- c) Explain how continuity is used in this proof.

Exercise 3. Assume f to be merely locally integrable (that is for any finite interval [a, b], f(x) is integrable on it). Prove that if f is additive then it must be of the form f(x) = ax. (Hint: Integrate

$$x' f(x) = \int_0^{x'} f(x) \, \mathrm{d}y$$
 (3)

and observe symmetry.¹)

Remark 3. The assumption on f can be further relaxed to only Lebesgue measurable.² ³ This is beyond our course and we will not discuss the proof. However, an important observation in Banach's proof is the following.

Exercise 4. Let f(x) be additive and $x_0 \in \mathbb{R}$. Assume f(x) is continuous at x_0 . Prove that f(x) is continuous everywhere.

Nonlinear additive functions

Are there nonlinear additive functions? If there are, then they are very weird looking beings.

^{1.} This proof is due to H. N. Shapiro: A Micronote on a functional equation, The American Mathematical Monthly, Vol. 80, No. 9, p.1041, 1973.

^{2.} S. Banach, Sur l'équation fonctionnelle f(x + y) = f(x) + f(y), Fundamenta Mathematicae. 1 (1920), available at http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1115.pdf.

^{3.} W. Siepinski, Sur l'équation fonctionnelle f(x + y) = f(x) + f(y), Fundamenta Mathematicae. 1 (1920), available at http://matwbn.icm.edu.pl/ksiazki/fm/fm1114.pdf.

Theorem 4. If f is additive but not linear, then the graph of f is dense in \mathbb{R}^2 .

Remark 5. Here the graph of a function is the set of points $\{(x, f(x)) | x \in \mathbb{R}\}$ in the plain \mathbb{R}^2 . And "dense" means for any point $(u, v) \in \mathbb{R}^2$ and any $\varepsilon > 0$, there is $x \in \mathbb{R}$ such that (x, f(x)) lies inside the circle with center (u, v) and radius ε .

Proof. First observe that f is linear $\iff f(0) = 0$ and $\forall x, y \in \mathbb{R}, x, y \neq 0$, $\frac{f(x)}{x} = \frac{f(y)}{y}$. From a previous exercise we know that f is additive $\implies f(0) = 0$. Therefore if f is a nonlinear additive function, then there are $x_1, x_2 \in \mathbb{R}$ such that

$$\frac{f(x_1)}{x_1} \neq \frac{f(x_2)}{x_2}.$$
(4)

This is equivalent to the linear independence of the two vectors $\begin{pmatrix} x_1 \\ f(x_1) \end{pmatrix}$ and $\begin{pmatrix} x_2 \\ f(x_2) \end{pmatrix}$. The independence implies that for any vector $\begin{pmatrix} u \\ v \end{pmatrix} \in \mathbb{R}^2$, there are $a, b \in \mathbb{R}$ such that

$$\begin{pmatrix} u \\ v \end{pmatrix} = a \begin{pmatrix} x_1 \\ f(x_1) \end{pmatrix} + b \begin{pmatrix} x_2 \\ f(x_2) \end{pmatrix}.$$
(5)

The proof ends once we prove the following claim: For any $a, b \in \mathbb{Q}$ (rational numbers), there are $x \in \mathbb{R}$ such that

$$\begin{pmatrix} x \\ f(x) \end{pmatrix} = a \begin{pmatrix} x_1 \\ f(x_1) \end{pmatrix} + b \begin{pmatrix} x_2 \\ f(x_2) \end{pmatrix}.$$
 (6)

The proof of this claim is left as exercise.

Exercise 5. Prove the claim at the end of the above proof.

Exercise 6. Prove that if f is additive and satisfies any of the following, then it is linear.

- a) f is bounded from above.
- b) f is monoton.
- c) f is convex.

Remark 6. This is kind of a universal phenomenon in real analysis: A function is either super nice or horrible. The deep reason for this is the existence depends on the so-called Axiom of Choice: Let X be a collection of sets, then there is a function $f: X \mapsto \bigcup_{A \in X} A$ such that $f(A) \in A$. In every day language, given any collection of sets, there is always a rule to pick one element from each set. Accepting this axiom or not has profound implications. Two examples: Banach-Tarski paradox⁴ and existence of Lebesgue unmeasurable sets.⁵

The construction of such functions was done by Georg Hamel $(1877-1954)^6$ using the existence of so-called Hamel basis (which of course depends on Axiom of Choice)

^{4.} Given a ball in the space \mathbb{R}^3 , you can break it into finitely many pieces and re-assemble these pieces to obtain two balls, each identical to the original ball.

^{5.} It's been proved by Robert M. Solovay (1938 –) (A model of set-theory in which every set of reals is Lebesgue measurable, Ann. Math. 92 1–56 1970) that, every set is Lebesgue measurable if we decide to not accept Axiom of Choice.

^{6.} Eine Basis aller Zahlen und die unste
tigen Losungen der Functionalgleichung: f(x + y) = f(x) + f(y), Math. Ann. 60 459-462 1905.

Definition 7. (Hamel basis on \mathbb{R}) A Hamel basis of \mathbb{R} is a subset B of \mathbb{R} such that every $x \in \mathbb{R}$ has a unique representation as a finite linear combination of numbers in B with rational coefficients.

Exercise 7. Prove that if $x \in \mathbb{R}$ can be written as $s = a \cdot 1 + b \sqrt{2} + c \sqrt{3}$ with $a, b, c \in \mathbb{Q}$, then such representation is unique. **Exercise 8.** Prove that $\{1, \sqrt{2}, \sqrt{3}\}$ is not a Hamel basis of \mathbb{R} .

Exercise 9. Let f_1, f_2 be additive and let B be a Hamel basis of \mathbb{R} . Then $f_1 = f_2$ on $B \Longrightarrow f_1 = f_2$ on \mathbb{R} .

Exercise 10. Given the existence of a Hamel basis B for \mathbb{R} , Construct a nonlinear additive function.