Applications of single variable calculus: Additive functions

Positive results

Definition 1. Let $f: \mathbb{R} \mapsto \mathbb{R}$. f is said to be "additive" if the following holds:

$$
\begin{equation*}
\forall x, y \in \mathbb{R} \quad f(x+y)=f(x)+f(y) \tag{1}
\end{equation*}
$$

Remark 2. The above functional equations is called the "Cauchy equation".

Exercise 1. Assume f to be continuous. We try to prove that $f(x)=a x$ for some $a \in \mathbb{R}$ through the following steps.
a) Prove that $f(0)=0$;
b) Give a reasonable guess of a;
c) Prove that there is $a \in \mathbb{R}$ such that $f(m)=a m$ for all $m \in \mathbb{Z}$ (that is m is an integer);
d) Prove that for the same $a, f(x)=a x$ for all $x \in \mathbb{Q}$ (rational);
e) Prove $f(x)=a x$ through continuity.

Exercise 2. A more clever proof using fundamental theorem of calculus can be carried out as follows.
a) Prove through integrating (1) to obtain

$$
\begin{equation*}
f(x)=\int_{x}^{1+x} f(x) \mathrm{d} x-\int_{0}^{1} f(y) \mathrm{d} y . \tag{2}
\end{equation*}
$$

b) Differentiate with respect to x to reach the conclusion.
c) Explain how continuity is used in this proof.

Exercise 3. Assume f to be merely locally integrable (that is for any finite interval $[a, b], f(x)$ is integrable on it). Prove that if f is additive then it must be of the form $f(x)=a x$. (Hint: Integrate

$$
\begin{equation*}
x^{\prime} f(x)=\int_{0}^{x^{\prime}} f(x) \mathrm{d} y \tag{3}
\end{equation*}
$$

and observe symmetry. ${ }^{1}$)

Remark 3. The assumption on f can be further relaxed to only Lebesgue measurable. ${ }^{2}{ }^{3}$ This is beyond our course and we will not discuss the proof. However, an important observation in Banach's proof is the following.

Exercise 4. Let $f(x)$ be additive and $x_{0} \in \mathbb{R}$. Assume $f(x)$ is continuous at x_{0}. Prove that $f(x)$ is continuous everywhere.

Nonlinear additive functions

Are there nonlinear additive functions? If there are, then they are very weird looking beings.

[^0]Theorem 4. If f is additive but not linear, then the graph of f is dense in \mathbb{R}^{2}.

Remark 5. Here the graph of a function is the set of points $\{(x, f(x)) \mid x \in \mathbb{R}\}$ in the plain \mathbb{R}^{2}. And "dense" means for any point $(u, v) \in \mathbb{R}^{2}$ and any $\varepsilon>0$, there is $x \in \mathbb{R}$ such that $(x, f(x))$ lies inside the circle with center (u, v) and radius ε.

Proof. First observe that f is linear $\Longleftrightarrow f(0)=0$ and $\forall x, y \in \mathbb{R}, x, y \neq 0, \frac{f(x)}{x}=\frac{f(y)}{y}$. From a previous exercise we know that f is additive $\Longrightarrow f(0)=0$. Therefore if f is a nonlinear additive function, then there are $x_{1}, x_{2} \in \mathbb{R}$ such that

$$
\begin{equation*}
\frac{f\left(x_{1}\right)}{x_{1}} \neq \frac{f\left(x_{2}\right)}{x_{2}} \tag{4}
\end{equation*}
$$

This is equivalent to the linear independence of the two vectors $\binom{x_{1}}{f\left(x_{1}\right)}$ and $\binom{x_{2}}{f\left(x_{2}\right)}$. The independence implies that for any vector $\binom{u}{v} \in \mathbb{R}^{2}$, there are $a, b \in \mathbb{R}$ such that

$$
\begin{equation*}
\binom{u}{v}=a\binom{x_{1}}{f\left(x_{1}\right)}+b\binom{x_{2}}{f\left(x_{2}\right)} . \tag{5}
\end{equation*}
$$

The proof ends once we prove the following claim: For any $a, b \in \mathbb{Q}$ (rational numbers), there are $x \in \mathbb{R}$ such that

$$
\begin{equation*}
\binom{x}{f(x)}=a\binom{x_{1}}{f\left(x_{1}\right)}+b\binom{x_{2}}{f\left(x_{2}\right)} \tag{6}
\end{equation*}
$$

The proof of this claim is left as exercise.

Exercise 5. Prove the claim at the end of the above proof.
Exercise 6. Prove that if f is additive and satisfies any of the following, then it is linear.
a) f is bounded from above.
b) f is monoton.
c) f is convex.

Remark 6. This is kind of a universal phenomenon in real analysis: A function is either super nice or horrible. The deep reason for this is the existence depends on the so-called Axiom of Choice: Let X be a collection of sets, then there is a function $f: X \mapsto \cup_{A \in X} A$ such that $f(A) \in A$. In every day language, given any collection of sets, there is always a rule to pick one element from each set. Accepting this axiom or not has profound implications. Two examples: Banach-Tarski paradox ${ }^{4}$ and existence of Lebesgue unmeasurable sets. ${ }^{5}$

The construction of such functions was done by Georg Hamel (1877-1954) ${ }^{6}$ using the existence of so-called Hamel basis (which of course depends on Axiom of Choice)

[^1]Definition 7. (Hamel basis on \mathbb{R}) A Hamel basis of \mathbb{R} is a subset B of \mathbb{R} such that every $x \in \mathbb{R}$ has a unique representation as a finite linear combination of numbers in B with rational coefficients.

Exercise 7. Prove that if $x \in \mathbb{R}$ can be written as $s=a \cdot 1+b \sqrt{2}+c \sqrt{3}$ with $a, b, c \in \mathbb{Q}$, then such representation is unique.
Exercise 8. Prove that $\{1, \sqrt{2}, \sqrt{3}\}$ is not a Hamel basis of \mathbb{R}.
Exercise 9. Let f_{1}, f_{2} be additive and let B be a Hamel basis of \mathbb{R}. Then $f_{1}=f_{2}$ on $B \Longrightarrow f_{1}=f_{2}$ on \mathbb{R}.
Exercise 10. Given the existence of a Hamel basis B for \mathbb{R}, Construct a nonlinear additive function.

[^0]: 1. This proof is due to H. N. Shapiro: A Micronote on a functional equation, The American Mathematical Monthly, Vol. 80, No. 9, p.1041, 1973.
 2. S. Banach, Sur l'équation fonctionnelle $f(x+y)=f(x)+f(y)$, Fundamenta Mathematicae. 1 (1920), available at http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1115.pdf.
 3. W. Siepinski, Sur l'équation fonctionnelle $f(x+y)=f(x)+f(y)$, Fundamenta Mathematicae. 1 (1920), available at http://matwbn.icm.edu.pl/ksiazki/fm/fm1/fm1114.pdf.
[^1]: 4. Given a ball in the space \mathbb{R}^{3}, you can break it into finitely many pieces and re-assemble these pieces to obtain two balls, each identical to the original ball.
 5. It's been proved by Robert M. Solovay (1938-) (A model of set-theory in which every set of reals is Lebesgue measurable, Ann. Math. $921-56$ 1970) that, every set is Lebesgue measurable if we decide to not accept Axiom of Choice.
 6. Eine Basis aller Zahlen und die unstetigen Losungen der Functionalgleichung: $f(x+y)=f(x)+f(y)$, Math. Ann. 60 4594621905.
