Properties of Riemann integrals

Fundamental Theorem of Calculus

Theorem 1. (FTC 1st Version) Let f be integrable on $[a, b]$. If F is continuous on $[a, b]$ and is an antiderivative of f, that is $F^{\prime}=f$, on (a, b), then

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=F(b)-F(a) \tag{1}
\end{equation*}
$$

Exercise 1. What is the significance of this theorem? How did it help you calculating integrals?
Exercise 2. Explain why we assume " F is continuous on $[a, b]$ ". Isn't it already a consequence of the differentiability of F ?
Exercise 3. Find a function $f:[0,1] \mapsto \mathbb{R}$ that is integrable but has no antiderivative.

Theorem 2. (FTC 2nd Version) Let f be integrable on $[a, b]$. Then $G(x):=\int_{a}^{x} f(t) \mathrm{d} t$ is continuous on $[a, b]$. Furthermore if f is continuous at a point $x_{0} \in(a, b)$, then G is differentiable at x_{0} and $G^{\prime}\left(x_{0}\right)=f\left(x_{0}\right)$.

Exercise 4. Let f be continuous on $[a, b]$. Calculate

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(\int_{-\cos (x)}^{\exp (x)} f\left(t^{2}\right) \mathrm{d} t\right) \tag{2}
\end{equation*}
$$

Exercise 5. Find a function f that is integrable on $[a, b]$ with $G(x):=\int_{a}^{x} f(t) \mathrm{d} t$ differentiable but $G^{\prime} \neq f$.

Change of variables

Theorem 3. Let $f(x)$ be continuous on $[a, b], \varphi(t):[\alpha, \beta] \mapsto \mathbb{R}$ is continuous on $[\alpha, \beta]$ and differentiable with $\varphi^{\prime}(t)$ is integrable. Further assume $\varphi(\alpha)=a, \varphi(\beta)=b, \varphi([\alpha, \beta]) \subseteq[a, b]$. Then

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t \tag{3}
\end{equation*}
$$

Remark 4. Note that we don't need φ to be one-to-one! However see the following exercise.

Exercise 6. Let f be integrable on $[a, b], \varphi$ satisfies:
i. φ is continuous and differentiable on $[a, b]$;
ii. φ^{\prime} is continuous on $[a, b]$;
iii. $\varphi(\alpha)=a, \varphi(\beta)=b$;
iv. φ is strictly monotone.

Then

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\int_{\alpha}^{\beta} f(\varphi(t)) \varphi^{\prime}(t) \mathrm{d} t . \tag{4}
\end{equation*}
$$

(Hint: Use Riemann sum.)
Exercise 7. Explore whether monotonicity is necessary in the above exercise.

Intermediate value theorems

Theorem 5. (First intermediate value theorem) Let f, g be integrable on $[a, b]$ and g does not change sign on $[a, b]$. Then there is $s \in\left[\min _{[a, b]} f, \max _{[a, b]} f\right]$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x=s \int_{a}^{b} g(x) \mathrm{d} x . \tag{5}
\end{equation*}
$$

If f is continuous on $[a, b]$, then there is $\xi \in[a, b]$ such that $f(\xi)=s$.

Exercise 8. Prove the theorem.
Exercise 9. Does the theorem still hold if we remove the sign condition on g ? Justify your answer.
Exercise 10. Let f, g be integrable on $[a, b]$ and g does not change sign on $[a, b]$. Assume there is $F(x)$ such that $F^{\prime}(x)=f(x)$ on (a, b). Can we conclude the existence of $\xi \in(a, b)$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x=f(\xi) \int_{a}^{b} g(x) \mathrm{d} x ? \tag{6}
\end{equation*}
$$

Justify your answer.

Theorem 6. (Second intermediate value theorem) Let $f:[a, b] \mapsto \mathbb{R}$ be integrable, and $g:[a, b] \mapsto \mathbb{R}$ satisfying $g \geqslant 0$. Then
a) If furthermore g is decreasing, then there is $\xi \in[a, b]$ such htat

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x=g(a) \int_{a}^{\xi} f(x) \mathrm{d} x \tag{7}
\end{equation*}
$$

b) If furthermore g is increasing, then there is $\xi \in[a, b]$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x=g(b) \int_{\xi}^{b} f(x) \mathrm{d} x \tag{8}
\end{equation*}
$$

c) If only assume furthermore that g is monotone, then there is $\xi \in[a, b]$ such that

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) \mathrm{d} x=g(a) \int_{a}^{\xi} f(x) \mathrm{d} x+g(b) \int_{\xi}^{b} f(x) \mathrm{d} x \tag{9}
\end{equation*}
$$

Remark 7. Note that the integrability of $f g$ is not assumed!

Exercise 11. Prove the theorem in the case $f(x)$ doesn't change sign either. (Hint: Define $H(y):=g(a) \int_{a}^{y} f(x) \mathrm{d} x+$ $g(b) \int_{y}^{b} f(x) \mathrm{d} x$ and try to use intermediate value theorem for continuous functions)

