Properties of Riemann integrals

Fundamental Theorem of Calculus

Theorem 1. (FTC 1st Version) Let f be integrable on [a, b]. If F is continuous on [a, b] and is an antiderivative of f, that is F' = f, on (a, b), then

$$\int_{a}^{b} f(x) \,\mathrm{d}x = F(b) - F(a). \tag{1}$$

Exercise 1. What is the significance of this theorem? How did it help you calculating integrals?

Exercise 2. Explain why we assume "F is continuous on [a, b]". Isn't it already a consequence of the differentiability of F?

Exercise 3. Find a function $f:[0,1] \mapsto \mathbb{R}$ that is integrable but has no antiderivative.

Theorem 2. (FTC 2nd Version) Let f be integrable on [a,b]. Then $G(x) := \int_a^x f(t) dt$ is continuous on [a,b]. Furthermore if f is continuous at a point $x_0 \in (a,b)$, then G is differentiable at x_0 and $G'(x_0) = f(x_0)$.

Exercise 4. Let f be continuous on [a, b]. Calculate

$$\frac{\mathrm{d}}{\mathrm{d}x} \left(\int_{-\cos(x)}^{\exp(x)} f(t^2) \,\mathrm{d}t \right). \tag{2}$$

Exercise 5. Find a function f that is integrable on [a, b] with $G(x) := \int_{a}^{x} f(t) dt$ differentiable but $G' \neq f$.

Change of variables

Theorem 3. Let f(x) be continuous on [a, b], $\varphi(t): [\alpha, \beta] \mapsto \mathbb{R}$ is continuous on $[\alpha, \beta]$ and differentiable with $\varphi'(t)$ is integrable. Further assume $\varphi(\alpha) = a, \varphi(\beta) = b, \varphi([\alpha, \beta]) \subseteq [a, b]$. Then

$$\int_{a}^{b} f(x) \,\mathrm{d}x = \int_{\alpha}^{\beta} f(\varphi(t)) \,\varphi'(t) \,\mathrm{d}t.$$
(3)

Remark 4. Note that we don't need φ to be one-to-one! However see the following exercise.

Exercise 6. Let f be integrable on [a, b], φ satisfies:

- i. φ is continuous and differentiable on [a, b];
- ii. φ' is continuous on [a, b];
- iii. $\varphi(\alpha) = a, \varphi(\beta) = b;$
- iv. φ is strictly monotone.

Then

$$\int_{a}^{b} f(x) \,\mathrm{d}x = \int_{\alpha}^{\beta} f(\varphi(t)) \,\varphi'(t) \,\mathrm{d}t. \tag{4}$$

(Hint: Use Riemann sum.)

Exercise 7. Explore whether monotonicity is necessary in the above exercise.

Intermediate value theorems

Theorem 5. (First intermediate value theorem) Let f, g be integrable on [a, b] and g does not change sign on [a, b]. Then there is $s \in [\min_{[a, b]} f, \max_{[a, b]} f]$ such that

$$\int_{a}^{b} f(x) g(x) dx = s \int_{a}^{b} g(x) dx.$$
(5)

If f is continuous on [a, b], then there is $\xi \in [a, b]$ such that $f(\xi) = s$.

Exercise 8. Prove the theorem.

Exercise 9. Does the theorem still hold if we remove the sign condition on g? Justify your answer.

Exercise 10. Let f, g be integrable on [a, b] and g does not change sign on [a, b]. Assume there is F(x) such that F'(x) = f(x) on (a, b). Can we conclude the existence of $\xi \in (a, b)$ such that

$$\int_{a}^{b} f(x) g(x) dx = f(\xi) \int_{a}^{b} g(x) dx?$$
(6)

Justify your answer.

Theorem 6. (Second intermediate value theorem) Let $f: [a, b] \mapsto \mathbb{R}$ be integrable, and $g: [a, b] \mapsto \mathbb{R}$ satisfying $g \ge 0$. Then

a) If furthermore g is decreasing, then there is $\xi \in [a, b]$ such that

$$\int_{a}^{b} f(x) g(x) dx = g(a) \int_{a}^{\xi} f(x) dx;$$
(7)

b) If furthermore g is increasing, then there is $\xi \in [a, b]$ such that

$$\int_{a}^{b} f(x) g(x) dx = g(b) \int_{\xi}^{b} f(x) dx;$$
(8)

c) If only assume furthermore that g is monotone, then there is $\xi \in [a, b]$ such that

$$\int_{a}^{b} f(x) g(x) dx = g(a) \int_{a}^{\xi} f(x) dx + g(b) \int_{\xi}^{b} f(x) dx.$$
(9)

Remark 7. Note that the integrability of fg is not assumed!

Exercise 11. Prove the theorem in the case f(x) doesn't change sign either. (Hint: Define $H(y) := g(a) \int_a^y f(x) dx + g(b) \int_y^b f(x) dx$ and try to use intermediate value theorem for continuous functions)