Taylor expansion

Taylor polynomial (expansion with Peano form of the remainder)

Definition 1. Let f(x) be kth differentiable on (a,b) for k = 1, 2, ..., n-1 and $f^{(n)}(x_0)$ exists for $x_0 \in (a,b)$. Then the polynomial

$$P_n(x) := f(x_0) + f'(x_0) (x - x_0) + \frac{f''(x_0)}{2} (x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$
(1)

is called the nth degree Taylor polynomial of f(x) at x_0 .

Exercise 1. Is it enough to assume only the existence of $f'(x_0), ..., f^{(n)}(x_0)$?

Exercise 2. (What is special about P_n ?) Prove that for any other *n*th degree polynomial $Q_n(x)$,

$$\lim_{x \to x_0} \frac{f(x) - P_n(x)}{f(x) - Q_n(x)} = 0.$$
 (2)

The difference $R_n(x) := f(x) - P_n(x)$ is called the "remainder". This is equivalent to

x

$$\lim_{x \to x_0} \frac{R_n(x)}{(x - x_0)^n} = 0.$$
(3)

Exercise 3. Prove that (3) and (2) are equivalent.

(Hint: We need to show

$$\lim \frac{R_n(x)}{R_n(x) + Q_n(x)} = 0 \text{ for every } n \text{th degree polynomial } Q_n \iff \lim \frac{R_n(x)}{(x - x_0)^n} = 0.$$
(4)

 \Leftarrow is relatively easy: Let $(x - x_0)^k$ be the lowest order term of Q_n . We simply divide both numerator and denominator by $(x - x_0)^k$ and then take limit. For \Longrightarrow , take $Q_n(x) = (x - x_0)^n$, and try to prove the conclusion using definition (ε - δ stuff).

Exercise 4. Let $n \in \mathbb{N}$. Let f(x) be such that there exists a *n*th degree polynomial $Q_n(x)$ satisfying

$$f(x) = Q_n(x) + R_n(x) \tag{5}$$

with $R_n(x)/(x-x_0)^n \longrightarrow 0$ as $x \longrightarrow x_0$. Can we conclude the existence of $f^{(k)}(x_0)$, k = 1, 2, ..., n? Can we conclude the existence of $\delta > 0$ such that $f^{(k)}(x)$ exists for k = 1, 2, ..., n-1 for all $x \in (x_0 - \delta, x_0 + \delta)$? (Hint: Take your nowhere continuous function and multiply by $(x - x_0)^{n+1}$)

Remark 2. Note that all the above is obtained only assuming the existence of $f^{(n)}(x_0)$ at one single point x_0 , that is the differentiability of $f^{(n-1)}(x)$ at one single point. If we assume more, we will be able to obtain more precise formulas for the remainder $R_n(x)$.

Taylor expansion with Lagrange form (and other forms) of the remainder

Theorem 3. (Lagrange form of the remainder) Let $f^{(k)}(x)$ be continuous on [a,b] for all k = 1, 2, ..., n. Let $f^{(n+1)}(x)$ exist on (a,b). Then there is $\xi \in (a,b)$ such that

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}.$$
(6)

Remark 4. This gives us more information than $R_n(x)/(x-x_0)^n \longrightarrow 0$.

Remark 5. It should be clear that ξ depends on x.

Exercise 5. Prove the theorem as follows. Fix x, x_0 . Define

$$F(t) = f(t) - \left[f(x_0) + f'(x_0) (t - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!} (t - x_0)^n \right]; \qquad G(t) = (t - x_0)^{n+1}.$$
(7)

Apply Cauchy's MVT *n* times to $\frac{F(t) - F(x_0)}{G(t) - G(x_0)}$.

Exercise 6. Prove the theorem as follows. Fix x, x_0 . Define

$$F(t) = f(x) - \left[f(t) + f'(t) (x - t) + \dots + \frac{f^{(n)}(t)}{n!} (x - t)^n \right]; \qquad G(t) = (x - t)^{n+1}.$$
(8)

Then apply Cauchy's MVT to $\frac{F(x_0) - F(x)}{G(x_0) - G(x)}$.

Exercise 7. (Cauchy form of the remainder) Taking G(t) = x - t to prove the following Cauchy form of the remainder:

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{n!} (x-\xi)^n (x-x_0) = \frac{f^{(n+1)}(x_0+\theta (x-x_0))}{n!} (1-\theta)^n (x-x_0)^{n+1}$$
(9)

where $\theta = \frac{\xi - x_0}{x - x_0} \in (0, 1).$

Exercise 8. (Schlomilich-Roche form of the remainder) Taking $G(t) = (x - t)^p$ to prove

$$R_n(x) = \frac{f^{(n+1)}(\xi)}{n! p} (x-\xi)^{n-p+1} (x-x_0)^p = \frac{f^{(n+1)}(x_0+\theta (x-x_0))}{n! p} (1-\theta)^{n+1-p} (x-x_0)^{n+1}$$
(10)

where $\theta = \frac{\xi - x_0}{x - x_0} \in (0, 1).$

Example 6. Estimate the remainder of the expansion of $\ln(1+x)$ at x = 0 to *n*th degree for $x \in (-1, 1)$. Solution. If we write the remainder in its Lagrange form:

$$|R_n| = \frac{1}{n+1} \left| \frac{x}{\xi} \right|^{n+1} \tag{11}$$

For which we have ξ between 1 and 1 + x. Thus when x > -1/2, we can get a good estimate to show $R_n \longrightarrow 0$; On the other hand when x < -1/2 this strategy won't work.

In this case we can use the Cauchy form:

$$|R_n| = \frac{1}{|1+\theta x|^{n+1}} (1-\theta)^n x^{n+1}.$$
(12)

Exercise 9. Fill in all the details for the above solution.

Exercise 10. What do you think is the reason that we restrict our consideration to $x \in (-1, 1)$?

Taylor expansion with integral form of the remainder

Theorem 7. (Integral form of the remainder) Assume $f^{(n+1)}(t)$ is integrable on (a,b), $x_0, x \in (a,b)$. Then

$$R_n(x) = \frac{1}{n!} \int_{x_0}^x f^{(n+1)}(t) \, (x-t)^n \, \mathrm{d}t.$$
(13)

Exercise 11. Prove the above theorem using mathematical induction and integration by parts.

Remark 8. The advantage of the integral form of remainder over all previous types of remainder is that everything involved: $f^{(n+1)}, (x-t)^n$ are differentiable and thus can be subject to further operations. On the other hand, the dependence of ξ on x is quite mysterious, there is even no guarantee that $\xi(x)$ is continuous. However, see the following exercise.

Exercise 12. Let $f:(a,b) \mapsto \mathbb{R}$ and $x_0 \in (a,b)$. Assume that $f^{(n+2)}(x)$ exists and is continuous on (a,b) with $f^{(n+1)}(x_0) \neq 0$. Let

$$f(x) = P_n(x) + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x - x_0)^{n+1}$$
(14)

be the Taylor expansion. Define $\xi(x_0) = x_0$. Prove that ξ is differentiable at x_0 and $\xi'(x) = 1/(n+2)$.