
1. Understanding limit of sequences.

1.1. Existence of limit.
Two common methods of establishing such existence are through Cauchy criterion and

monotonicity.

Cauchy criterion.

Definition 1. A sequence {xn} is said to be a Cauchy sequence if for any ε > 0, there is N ∈N

such that for any m,n > N, |xm −xn|<ε.

Exercise 1. How would you define “Cauchy sequence” in a general topological space (X, Σ)? What sequences

are Cauchy if Σ is the discrete or trivial topology?

Theorem 2. (Cauchy criterion) Let {xn} be a sequence of real numbers. Then

{xn} is Cauchy� lim
n�∞

xn exists. (1)

Exercise 2. Can we replace |xm − xn|< ε in the definition of Cauchy sequence by |xn+1− xn|<ε? Why?

Exercise 3. Design similar criterions for limx� af(x) where a∈R or a=±∞.

Remark 3. Implicit in the above theorem is that limn�∞xn exists and is still in R.

Exercise 4. Let {xn}⊂Q be a sequence of rational numbers. Can we define “Cauchy” for such sequences?

Monotonicity.

Theorem 4. Let {xn} be a sequence of real numbers. Then limn�∞xn exists if either one of the

following holds

• {xn} increases and has a finite upper bound;

• {xn} decreases and has a finite lower bound.

Exercise 5. Let {xn} ⊆ Q be increasing with finite upper bound. Can we conclude limn�∞xn exists in Q?

What is the crucial difference between R and Q?

Exercise 6. For those who knows complex numbers: Let {xn}⊂C be a sequence of complex numbers. Can we

formulate the monotone convergence theorem for it? Can we formulate Cauchy criterion for it?

Example 5. Prove the existence of limit limn�∞
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a) The sequence is increasing;

b) The sequence is bounded from above.
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The relation is now obvious.

b) We have
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Thus ends the proof. �

Exercise 7. Using the above, prove

lim
x�∞
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= lim
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1 +
1

n

)

n

. (5)

1.2. Subsequences.

Definition 6. Let {xn} be a sequence of real numbers. A subsequence {xnk
} of {xn} is a composite

function:

xnk
= f(g(k)) (6)

where f :N� R is defined by f(n)6 xn and g:N� N is defined by g(k)6 nk. We further require

g to be strictly increasing, that is k < l� g(k) < g(l).1

Remark 7. It is important to understand that the “n” in the notation {xnk
} does not have any

numerical value, it is k that is changing.

Theorem 8. Let {xn} be a sequence of real numbers.

a) If limn�∞xn = L∈R, then any subsequence {xnk
} satisfies limk�∞xnk

=L.

b) If all subsequences {xnk
} converges to L, then limn�∞xn exists and equals L.

Exercise 8. Let {xn} be a real sequence. Assume that every subsequence of {xn} converges. Prove that {xn}
converges.

1.3. Bolzano-Weierstrass.

Theorem 9. (Bolzano-Weierstrass) Let {xn}⊂ [a, b]. Then there is a converging subsequence.

Remark 10. In other words, every bounded sequence has a converging subsequence.

Exercise 9. Let {xn} be a bounded real sequence. Assume that every convergent subsequence has the same

limit L, then limn�∞xn exists and equals L.

1.4. Liminf and limsup.

Definition 11. (liminf and limsup) Let {xn} be a sequence of real numbers, we define

liminf
n�∞

xn = lim
n�∞

(inf {xn, xn+1,	 }); limsup
n�∞

xn = lim
n�∞

(sup {xn, xn+1,	 }). (7)

Exercise 10. Let {xn} be a sequence of real numbers. Let A6 {L∈R N ∃subsequence xnk
� L}. Then

liminf
n�∞ xn = inf A; limsup

n�∞ xn = supA. (8)

Further prove that limn�∞xn = L� liminfn�∞xn = limsupn�∞xn = L.

1. Note that as a consequence we always have nk >k.


