1. Understanding limit of sequences.

1.1. Existence of limit.

Two common methods of establishing such existence are through Cauchy criterion and monotonicity.

Cauchy criterion.

Definition 1. A sequence $\left\{x_{n}\right\}$ is said to be a Cauchy sequence if for any $\varepsilon>0$, there is $N \in \mathbb{N}$ such that for any $m, n>N,\left|x_{m}-x_{n}\right|<\varepsilon$.

Exercise 1. How would you define "Cauchy sequence" in a general topological space (X, Σ) ? What sequences are Cauchy if Σ is the discrete or trivial topology?

Theorem 2. (Cauchy criterion) Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Then

$$
\begin{equation*}
\left\{x_{n}\right\} \text { is Cauchy } \Longleftrightarrow \lim _{n \longrightarrow \infty} x_{n} \text { exists. } \tag{1}
\end{equation*}
$$

Exercise 2. Can we replace $\left|x_{m}-x_{n}\right|<\varepsilon$ in the definition of Cauchy sequence by $\left|x_{n+1}-x_{n}\right|<\varepsilon$? Why?
Exercise 3. Design similar criterions for $\lim _{x \rightarrow a} f(x)$ where $a \in \mathbb{R}$ or $a= \pm \infty$.
Remark 3. Implicit in the above theorem is that $\lim _{n \rightarrow \infty} x_{n}$ exists and is still in \mathbb{R}.
Exercise 4. Let $\left\{x_{n}\right\} \subset \mathbb{Q}$ be a sequence of rational numbers. Can we define "Cauchy" for such sequences?
Monotonicity.
Theorem 4. Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Then $\lim _{n \rightarrow \infty} x_{n}$ exists if either one of the following holds

- $\left\{x_{n}\right\}$ increases and has a finite upper bound;
- $\left\{x_{n}\right\}$ decreases and has a finite lower bound.

Exercise 5. Let $\left\{x_{n}\right\} \subseteq \mathbb{Q}$ be increasing with finite upper bound. Can we conclude $\lim _{n} \rightarrow \infty x_{n}$ exists in \mathbb{Q} ? What is the crucial difference between \mathbb{R} and \mathbb{Q} ?
Exercise 6. For those who knows complex numbers: Let $\left\{x_{n}\right\} \subset \mathbb{C}$ be a sequence of complex numbers. Can we formulate the monotone convergence theorem for it? Can we formulate Cauchy criterion for it?
Example 5. Prove the existence of $\operatorname{limit} \lim _{n \longrightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ by showing
a) The sequence is increasing;
b) The sequence is bounded from above.

Proof.

a) We expand

$$
\begin{align*}
\left(1+\frac{1}{n}\right)^{n}= & 1+\frac{n}{1} \frac{1}{n}+\frac{n(n-1)}{2!} \frac{1}{n^{2}}+\cdots+\frac{n!}{n!} \frac{1}{n^{n}} \\
= & 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n}\right) \cdots\left(1-\frac{n-1}{n}\right) ; \tag{2}\\
\left(1+\frac{1}{n+1}\right)^{n+1}= & 1+1+\frac{1}{2!}\left(1-\frac{1}{n+1}\right)+\cdots+\frac{1}{n!}\left(1-\frac{1}{n+1}\right) \cdots\left(1-\frac{n-1}{n+1}\right) \\
& +\frac{1}{(n+1)!}\left(1-\frac{1}{n+1}\right) \cdots\left(1-\frac{n}{n+1}\right) . \tag{3}
\end{align*}
$$

The relation is now obvious.
b) We have

$$
\begin{equation*}
\left(1+\frac{1}{n}\right)^{n}<1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}<1+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots+\frac{1}{2^{n-1}}<3 \tag{4}
\end{equation*}
$$

Thus ends the proof.

Exercise 7. Using the above, prove

$$
\begin{equation*}
\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} . \tag{5}
\end{equation*}
$$

1.2. Subsequences.

Definition 6. Let $\left\{x_{n}\right\}$ be a sequence of real numbers. A subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ is a composite function:

$$
\begin{equation*}
x_{n_{k}}=f(g(k)) \tag{6}
\end{equation*}
$$

where $f: \mathbb{N} \mapsto \mathbb{R}$ is defined by $f(n):=x_{n}$ and $g: \mathbb{N} \mapsto \mathbb{N}$ is defined by $g(k):=n_{k}$. We further require g to be strictly increasing, that is $k<l \Longrightarrow g(k)<g(l) .{ }^{1}$

Remark 7. It is important to understand that the " n " in the notation $\left\{x_{n_{k}}\right\}$ does not have any numerical value, it is k that is changing.

Theorem 8. Let $\left\{x_{n}\right\}$ be a sequence of real numbers.
a) If $\lim _{n \longrightarrow \infty} x_{n}=L \in \mathbb{R}$, then any subsequence $\left\{x_{n_{k}}\right\}$ satisfies $\lim _{k \rightarrow \infty} x_{n_{k}}=L$.
b) If all subsequences $\left\{x_{n_{k}}\right\}$ converges to L, then $\lim _{n \longrightarrow \infty} x_{n}$ exists and equals L.

Exercise 8. Let $\left\{x_{n}\right\}$ be a real sequence. Assume that every subsequence of $\left\{x_{n}\right\}$ converges. Prove that $\left\{x_{n}\right\}$ converges.

1.3. Bolzano-Weierstrass.

Theorem 9. (Bolzano-Weierstrass) Let $\left\{x_{n}\right\} \subset[a, b]$. Then there is a converging subsequence.
Remark 10. In other words, every bounded sequence has a converging subsequence.
Exercise 9. Let $\left\{x_{n}\right\}$ be a bounded real sequence. Assume that every convergent subsequence has the same limit L, then $\lim _{n \rightarrow \infty} x_{n}$ exists and equals L.

1.4. Liminf and limsup.

Definition 11. (liminf and limsup) Let $\left\{x_{n}\right\}$ be a sequence of real numbers, we define

$$
\begin{equation*}
\liminf _{n \longrightarrow \infty} x_{n}=\lim _{n \longrightarrow \infty}\left(\inf \left\{x_{n}, x_{n+1}, \ldots\right\}\right) ; \quad \limsup _{n \longrightarrow \infty} x_{n}=\lim _{n \longrightarrow \infty}\left(\sup \left\{x_{n}, x_{n+1}, \ldots\right\}\right) . \tag{7}
\end{equation*}
$$

Exercise 10. Let $\left\{x_{n}\right\}$ be a sequence of real numbers. Let $A:=\left\{L \in \mathbb{R} \mid \exists\right.$ subsequence $\left.x_{n_{k}} \longrightarrow L\right\}$. Then

$$
\begin{equation*}
\liminf _{n \longrightarrow \infty} x_{n}=\inf A ; \quad \limsup _{n \longrightarrow \infty} x_{n}=\sup A \tag{8}
\end{equation*}
$$

Further prove that $\lim _{n \longrightarrow \infty} x_{n}=L \Longleftrightarrow \liminf _{n \longrightarrow \infty} x_{n}=\limsup _{n \longrightarrow \infty} x_{n}=L$.

[^0]
[^0]: 1. Note that as a consequence we always have $n_{k} \geqslant k$.
