1. Understanding limit of sequences.

1.1. Existence of limit.

Two common methods of establishing such existence are through Cauchy criterion and monotonicity.

Cauchy criterion.

Definition 1. A sequence $\{x_n\}$ is said to be a Cauchy sequence if for any $\varepsilon > 0$, there is $N \in \mathbb{N}$ such that for any m, n > N, $|x_m - x_n| < \varepsilon$.

Exercise 1. How would you define "Cauchy sequence" in a general topological space (X, Σ) ? What sequences are Cauchy if Σ is the discrete or trivial topology?

Theorem 2. (Cauchy criterion) Let $\{x_n\}$ be a sequence of real numbers. Then

$$\{x_n\} \text{ is } Cauchy \Longleftrightarrow \lim_{n \to \infty} x_n \text{ exists.}$$
(1)

Exercise 2. Can we replace $|x_m - x_n| < \varepsilon$ in the definition of Cauchy sequence by $|x_{n+1} - x_n| < \varepsilon$? Why? **Exercise 3.** Design similar criterions for $\lim_{x \to a} f(x)$ where $a \in \mathbb{R}$ or $a = \pm \infty$.

Remark 3. Implicit in the above theorem is that $\lim_{n \to \infty} x_n$ exists and is still in \mathbb{R} .

Exercise 4. Let $\{x_n\} \subset \mathbb{Q}$ be a sequence of rational numbers. Can we define "Cauchy" for such sequences?

Monotonicity.

Theorem 4. Let $\{x_n\}$ be a sequence of real numbers. Then $\lim_{n \to \infty} x_n$ exists if either one of the following holds

- $\{x_n\}$ increases and has a finite upper bound;
- $\{x_n\}$ decreases and has a finite lower bound.

Exercise 5. Let $\{x_n\} \subseteq \mathbb{Q}$ be increasing with finite upper bound. Can we conclude $\lim_{n \longrightarrow \infty} x_n$ exists in \mathbb{Q} ? What is the crucial difference between \mathbb{R} and \mathbb{Q} ?

Exercise 6. For those who knows complex numbers: Let $\{x_n\} \subset \mathbb{C}$ be a sequence of complex numbers. Can we formulate the monotone convergence theorem for it? Can we formulate Cauchy criterion for it?

Example 5. Prove the existence of limit $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n$ by showing

- a) The sequence is increasing;
- b) The sequence is bounded from above.

Proof.

a) We expand

$$\left(1+\frac{1}{n}\right)^n = 1+\frac{n}{1}\frac{1}{n}+\frac{n(n-1)}{2!}\frac{1}{n^2}+\dots+\frac{n!}{n!}\frac{1}{n^n}$$

$$= 1+1+\frac{1}{2!}\left(1-\frac{1}{n}\right)+\dots+\frac{1}{n!}\left(1-\frac{1}{n}\right)\dots\left(1-\frac{n-1}{n}\right);$$

$$(2)$$

$$\left(1 + \frac{1}{n+1}\right)^{n+1} = 1 + 1 + \frac{1}{2!} \left(1 - \frac{1}{n+1}\right) + \dots + \frac{1}{n!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{n-1}{n+1}\right) + \frac{1}{(n+1)!} \left(1 - \frac{1}{n+1}\right) \dots \left(1 - \frac{n}{n+1}\right).$$

$$(3)$$

The relation is now obvious.

b) We have

$$\left(1+\frac{1}{n}\right)^n < 1+1+\frac{1}{2!}+\frac{1}{3!}+\dots+\frac{1}{n!} < 1+1+\frac{1}{2}+\frac{1}{2^2}+\dots+\frac{1}{2^{n-1}} < 3.$$
(4)

Thus ends the proof.

Exercise 7. Using the above, prove

$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n.$$
(5)

1.2. Subsequences.

Definition 6. Let $\{x_n\}$ be a sequence of real numbers. A subsequence $\{x_{n_k}\}$ of $\{x_n\}$ is a composite function:

$$x_{n_k} = f(g(k)) \tag{6}$$

where $f: \mathbb{N} \to \mathbb{R}$ is defined by $f(n) := x_n$ and $g: \mathbb{N} \to \mathbb{N}$ is defined by $g(k) := n_k$. We further require g to be strictly increasing, that is $k < l \Longrightarrow g(k) < g(l)$.¹

Remark 7. It is important to understand that the "n" in the notation $\{x_{n_k}\}$ does not have any numerical value, it is k that is changing.

Theorem 8. Let $\{x_n\}$ be a sequence of real numbers.

- a) If $\lim_{n \to \infty} x_n = L \in \mathbb{R}$, then any subsequence $\{x_{n_k}\}$ satisfies $\lim_{k \to \infty} x_{n_k} = L$.
- b) If all subsequences $\{x_{n_k}\}$ converges to L, then $\lim_{n \to \infty} x_n$ exists and equals L.

Exercise 8. Let $\{x_n\}$ be a real sequence. Assume that every subsequence of $\{x_n\}$ converges. Prove that $\{x_n\}$ converges.

1.3. Bolzano-Weierstrass.

Theorem 9. (Bolzano-Weierstrass) Let $\{x_n\} \subset [a, b]$. Then there is a converging subsequence.

Remark 10. In other words, every bounded sequence has a converging subsequence.

Exercise 9. Let $\{x_n\}$ be a bounded real sequence. Assume that every convergent subsequence has the same limit L, then $\lim_{n \to \infty} x_n$ exists and equals L.

1.4. Liminf and limsup.

Definition 11. (liminf and limsup) Let $\{x_n\}$ be a sequence of real numbers, we define

$$\liminf_{n \to \infty} x_n = \lim_{n \to \infty} (\inf \{x_n, x_{n+1}, \dots\}); \qquad \limsup_{n \to \infty} x_n = \lim_{n \to \infty} (\sup \{x_n, x_{n+1}, \dots\}). \tag{7}$$

Exercise 10. Let $\{x_n\}$ be a sequence of real numbers. Let $A := \{L \in \mathbb{R} | \exists subsequence x_{n_k} \longrightarrow L\}$. Then

$$\liminf_{n \to \infty} x_n = \inf A; \qquad \limsup_{n \to \infty} x_n = \sup A.$$
(8)

 $\text{Further prove that } \lim_{n \longrightarrow \infty} x_n = L \Longleftrightarrow \text{liminf}_{n \longrightarrow \infty} x_n = \text{limsup}_{n \longrightarrow \infty} x_n = L.$

^{1.} Note that as a consequence we always have $n_k \ge k$.