Math 118 Winter 2015 Lecture 47 (Apr. 9, 2015)

Final Review II: Curves and Surfaces

- Convexity.

Example 1. Let $f: \mathbb{R} \mapsto \mathbb{R}$ be convex.
i. Further assume that f is twice differentiable on \mathbb{R}. Prove that $e^{f(x)}$ is convex.
ii. Prove that $e^{f(x)}$ is convex without any further assumption.
iii. Find $f: \mathbb{R} \mapsto \mathbb{R}$ not convex but $e^{f(x)}$ is convex.

Proof.

i. We calculate

$$
\begin{equation*}
\left(e^{f}\right)^{\prime \prime}=\left(e^{f} f^{\prime}\right)^{\prime}=e^{f} f^{\prime \prime}+e^{f}\left(f^{\prime}\right)^{2} \geqslant 0 \tag{1}
\end{equation*}
$$

as $f^{\prime \prime} \geqslant 0$.
ii. First notice that as $\left(e^{x}\right)^{\prime \prime}=e^{x} \geqslant 0, e^{x}$ is convex. Now let $x, y \in \mathbb{R}, \lambda \in[0,1]$ be arbitrary. We have, by convexity of f and monotonicity of e^{x}, and then convexity of e^{x},

$$
\begin{equation*}
e^{f(\lambda x+(1-\lambda) y)} \leqslant e^{\lambda f(x)+(1-\lambda) f(y)} \leqslant \lambda e^{f(x)}+(1-\lambda) e^{f(y)} . \tag{2}
\end{equation*}
$$

iii. We prove that $f(x)=\left\{\begin{array}{ll}0 & x \leqslant 1 \\ \ln x & x>1\end{array}\right.$ is not convex. But $e^{f(x)}=\left\{\begin{array}{ll}1 & x \leqslant 1 \\ x & x>1\end{array}\right.$ is convex. First as $(\ln x)^{\prime \prime}=-\frac{1}{x^{2}}<0$ for $x>1$, we see that $f(x)$ is concave on $(1, \infty)$ and therefore is not convex on \mathbb{R}. Now consider $x_{1}, x_{2} \in \mathbb{R}$ and $\lambda \in[0,1]$ arbitrary. There are three cases. Wlog $x_{1}<x_{2}$.

1. $x_{1}, x_{2} \leqslant 1$. Then $e^{f\left(x_{1}\right)}=e^{f\left(x_{2}\right)}=e^{f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)}=1 \Longrightarrow e^{f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)}=$ $\lambda e^{f\left(x_{1}\right)}+(1-\lambda) e^{f\left(x_{2}\right)}$;
2. $x_{1}, x_{2}>1$. We have again $e^{f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)}=\lambda e^{f\left(x_{1}\right)}+(1-\lambda) e^{f\left(x_{2}\right)}$.
3. $x_{1} \leqslant 1<x_{2}$. In this case we have $e^{f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)} \leqslant e^{f\left(\lambda+(1-\lambda) x_{2}\right)}=\lambda+$ $(1-\lambda) x_{2}=\lambda e^{f\left(x_{1}\right)}+(1-\lambda) e^{f\left(x_{2}\right)}$.

- Arc length.
- $y=f(x), a \leqslant x \leqslant b$.

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x . \tag{3}
\end{equation*}
$$

- $x=x(t), y=y(t), a \leqslant t \leqslant b$.

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t \tag{4}
\end{equation*}
$$

- Polar coordinates $r=r(t), \theta=\theta(t), a \leqslant t \leqslant b$.

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{r^{\prime}(t)^{2}+r(t)^{2} \theta^{\prime}(t)^{2}} \mathrm{~d} t \tag{5}
\end{equation*}
$$

- Trivial generalization to arc length of spatial curves.

Example 2. Compute the arc length of the astroid $x=\cos ^{3} t, y=\sin ^{3} t$.
Solution. As $x(t)$ and $y(t)$ have period 2π, the curve is given by $0 \leqslant t \leqslant 2 \pi$. We have

$$
\begin{align*}
l & =\int_{0}^{2 \pi} \sqrt{\left(3 \cos ^{2} t \sin t\right)^{2}+\left(3 \sin ^{2} t \cos t\right)^{2}} \mathrm{~d} t \\
& =\int_{0}^{2 \pi} 3|\sin t \cos t| \mathrm{d} t \\
& =\frac{3}{2} \int_{0}^{2 \pi}|\sin 2 t| \mathrm{d} t \\
& =6 . \tag{6}
\end{align*}
$$

- Area of plane regions.
- $a \leqslant x \leqslant b, g(x) \leqslant y \leqslant f(x)$.

$$
\begin{equation*}
A=\int_{a}^{b}[f(x)-g(x)] \mathrm{d} x \tag{7}
\end{equation*}
$$

- $\quad x=x(t), y=y(t), a \leqslant t \leqslant b$. Closed curve. Counter-clockwise as t increases.

$$
\begin{equation*}
A=-\int_{a}^{b} y(t) x^{\prime}(t) \mathrm{d} t=\int_{a}^{b} x(t) y^{\prime}(t) \mathrm{d} t=\frac{1}{2} \int_{a}^{b}\left[x(t) y^{\prime}(t)-y(t) x^{\prime}(t)\right] \mathrm{d} t \tag{8}
\end{equation*}
$$

Example 3. Calculate the area bounded by the curve $x=a \cos t, y=b \sin t, a, b>0$.
Solution. We have

$$
\begin{equation*}
A=\int_{0}^{2 \pi}(a \cos t)(b \sin t)^{\prime} \mathrm{d} t=\pi a b \tag{9}
\end{equation*}
$$

- Volume.
- Area of cross-section with $x=x_{0}: A\left(x_{0}\right)$,

$$
\begin{equation*}
V=\int_{a}^{b} A(x) \mathrm{d} x \tag{10}
\end{equation*}
$$

Example 4. Find the volume of the torus generated by revolving a circle of radius 1 whose center is 2 away from the axis.
Solution. Let the axis be x-axis. Let the center of the circle be $(0,2)$. The cross-section of the torus with the plane $x=c$ is 0 when $c>1$ or $c<-1$. For $c \in[-1,1]$ the cross-section is an anulus with inner radius $2-\sqrt{1-c^{2}}$ and outer radius $2+\sqrt{1-c^{2}}$. Thus we have

$$
\begin{equation*}
A(x)=\pi\left[\left(2+\sqrt{1-x^{2}}\right)^{2}-\left(2-\sqrt{1-x^{2}}\right)^{2}\right]=8 \pi \sqrt{1-x^{2}} \tag{11}
\end{equation*}
$$

The volume is now given by

$$
\begin{equation*}
8 \pi \int_{-1}^{1} \sqrt{1-x^{2}} \mathrm{~d} x \xlongequal{x=\sin t} 8 \pi \int_{-\pi / 2}^{\pi / 2} \cos ^{2} t \mathrm{~d} t=4 \pi^{2} \tag{12}
\end{equation*}
$$

