Math 118 Winter 2015 Lecture 46 (Apr. 8, 2015)

Final Review I: Optimization \& Convexity

- Theory.
- Mathematical optimization problem:

$$
\begin{equation*}
\min / \max f(x) \quad \text { subject to } a \leqslant x \leqslant b \quad(\text { or } a<x<b, a<x \leqslant b, a \leqslant x<b) \tag{1}
\end{equation*}
$$

Make sure you know the equivalence of maximization and minimization problems.

- Global and local minimizers.
- Global minimizer:

$$
\begin{equation*}
\forall x \in[a, b], \quad f\left(x_{0}\right) \leqslant f(x) . \tag{2}
\end{equation*}
$$

- Local minimizer:

$$
\begin{equation*}
\exists \delta>0, \quad \forall x \in[a, b] \cap\left(x_{0}-\delta, x_{0}+\delta\right), \quad f\left(x_{0}\right) \leqslant f(x) . \tag{3}
\end{equation*}
$$

- Interior local minimizer:

$$
\begin{equation*}
x_{0} \in(a, b), \quad \exists \delta>0, \quad \forall x \in[a, b] \cap\left(x_{0}-\delta, x_{0}+\delta\right), \quad f\left(x_{0}\right) \leqslant f(x) . \tag{4}
\end{equation*}
$$

- Relations:
x_{0} is a global minimizer $\Longrightarrow x_{0}$ is a local minimizer;
x_{0} is an interior local minimizer $\Longrightarrow x_{0}$ is a local minimizer.
Exercise 1. Give counter-examples to the \Longleftarrow direction in (5) and (6).
- Solving optimization problems.
- Basic strategy: Assume that f is differentiable in (a, b).

1. Find all interior local minimizers;
2. Compare values at these interior local minimizers, together with values at a, b.

Exercise 2. What if f is differentiable in $(a, c) \cup(c, b)$ for some $c \in(a, b)$ but not differentiable at c ?

- Finding all interior local minimizers.
- Candidates for interior local minimizers.

Theorem. If f is differentiable in (a, b), then $f^{\prime}=0$ at all interior local minimizers.

Exercise 3. Can $f^{\prime}=0$ at points other than interior local minimizers?

- Which of these points are interior local minimizers?

Let $x_{0} \in(a, b)$ satisfy $f^{\prime}\left(x_{0}\right)=0$.

- Criterion 1. If there is $\delta>0$ such that $f^{\prime}(x) \leqslant 0$ for $x \in\left(x_{0}-\delta, x_{0}\right)$ and $f^{\prime}(x) \geqslant 0$ for $x \in\left(x_{0}, x_{0}+\delta\right)$, then x_{0} is an interior local minimizer.

Exercise 4. Show that this criterion is not necessary for x_{0} to be an interior local minimizer.

- Criterion 2. If $f^{\prime \prime}\left(x_{0}\right)>0$ then x_{0} is an interior local minimizer.

Exercise 5. Show that this criterion is not necessary.
Make sure you know the corresponding criteria for maximizers.

- Examples.

Example 1. Solve

$$
\begin{equation*}
\max / \min f(x)=\frac{x^{3}}{3}-2 x^{2}+3 x+1 \quad \text { s.t. } \quad 0 \leqslant x \leqslant 4 \tag{7}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
f^{\prime}(x)=x^{2}-4 x+3 \tag{8}
\end{equation*}
$$

So $f^{\prime}(x)=0 \Longrightarrow x_{1,2}=1,3$. Now compare

$$
\begin{equation*}
f(0)=1, \quad f(1)=\frac{7}{3}, \quad f(3)=1, \quad f(4)=\frac{7}{3} . \tag{9}
\end{equation*}
$$

Therefore the global minimizers are 0,3 , global maximizers are 1,4 .
Example 2. Find all local minimizers of $f(x)=2 \sin x+\cos 2 x$ for $-\infty<x<\infty$.
Solution. We have

$$
\begin{equation*}
f^{\prime}(x)=2 \cos x-2 \sin 2 x=2(2 \sin x-1) \cos x . \tag{10}
\end{equation*}
$$

Setting $f^{\prime}(x)=0$ we have $x=2 k \pi+\frac{\pi}{6}, 2 k \pi+\frac{5 \pi}{6}, k \pi+\frac{\pi}{2}, k \in \mathbb{Z}$. As $f(x)$ is periodic with period 2π, we only need to test the points $\frac{\pi}{6}, \frac{5 \pi}{6}, \frac{\pi}{2}, \frac{3 \pi}{2}$. To see which of them are local minimizers we calculate

$$
\begin{equation*}
f^{\prime \prime}(x)=-2 \sin x-4 \cos 2 x \tag{11}
\end{equation*}
$$

and further

$$
\begin{equation*}
f^{\prime \prime}\left(\frac{\pi}{6}\right)=-3, \quad f^{\prime \prime}\left(\frac{5 \pi}{6}\right)=-3, \quad f^{\prime \prime}\left(\frac{\pi}{2}\right)=2, \quad f^{\prime \prime}\left(\frac{3 \pi}{2}\right)=6 . \tag{12}
\end{equation*}
$$

Thus we see that the local minimizers are $k \pi+\frac{\pi}{2}, k \in \mathbb{Z}$.
Example 3. Find all local minimizers and maximizers to

$$
\begin{equation*}
f(x)=(x-1)|x|^{2 / 3} \quad \text { over } \quad-1 \leqslant x \leqslant 1 . \tag{13}
\end{equation*}
$$

Solution. We notice that $f(x)$ is not differentiable at $x=0$. At other points we have

$$
\begin{equation*}
f^{\prime}(x)=\frac{5 x-2}{3 x^{1 / 3}} . \tag{14}
\end{equation*}
$$

Thus $f^{\prime}(x)=0 \Longrightarrow x_{0}=\frac{2}{5}$. Thus we have four candidates for local minimizers/maximizers: $-1,0, \frac{2}{5}, 1$.

- -1 . We have $f^{\prime}(x)>0$ for $x \in(-1,0)$. Therefore -1 is a local minimizer.
- 0 . We have $f^{\prime}(x)>0$ for $x \in(-1,0)$ and $f^{\prime}(x)<0$ for $x \in\left(0, \frac{2}{5}\right)$. Therefore 0 is a local maximizer.
- $\frac{2}{5}$. We have $f^{\prime}(x)<0$ for $x \in\left(0, \frac{2}{5}\right)$ and $f^{\prime}(x)>0$ for $x \in\left(\frac{2}{5}, 1\right)$. Therefore $\frac{2}{5}$ is a local minimizer.
- 1. We have $f^{\prime}(x)>0$ for $x \in\left(\frac{2}{5}, 1\right)$. Therefore 1 is a local maximizer.
- Convexity.
- Definition.
- A function $f:[a, b] \mapsto \mathbb{R}$ is convex if and only if

$$
\begin{equation*}
\forall x, y \in[a, b], \quad \forall \lambda \in[0,1], \quad f(\lambda x+(1-\lambda) y) \leqslant \lambda f(x)+(1-\lambda) f(y) \tag{15}
\end{equation*}
$$

- A function $f:[a, b] \mapsto \mathbb{R}$ is concave if and only if

$$
\begin{equation*}
\forall x, y \in[a, b], \quad \forall \lambda \in[0,1], \quad f(\lambda x+(1-\lambda) y) \geqslant \lambda f(x)+(1-\lambda) f(y) . \tag{16}
\end{equation*}
$$

- Properties.
- $\quad f$ is convex on $[a, b] \Longleftrightarrow \forall x_{1}, \ldots, x_{n} \in[a, b], \forall \lambda_{1}, \ldots, \lambda_{n} \geqslant 0, \lambda_{1}+\cdots+\lambda_{n}=1$,

$$
\begin{equation*}
f\left(\lambda_{1} x_{1}+\cdots+\lambda_{n} x_{n}\right) \leqslant \lambda_{1} f\left(x_{1}\right)+\cdots+\lambda_{n} f\left(x_{n}\right) \tag{17}
\end{equation*}
$$

- f is convex on $[a, b] \Longleftrightarrow \forall a \leqslant x<y<z \leqslant b, \frac{f(z)-f(y)}{z-y} \geqslant \frac{f(y)-f(x)}{y-x} \Longleftrightarrow$ $\forall a \leqslant x<y<z \leqslant b, \frac{f(z)-f(x)}{z-x} \geqslant \frac{f(y)-f(x)}{y-x}$.
- $\quad f$ is convex on $[a, b]$ then f is continuous on (a, b).
- Checking convexity.
- If f is continuous on $[a, b]$ and differentiable on (a, b), then f is convex on $[a, b]$ if and only if $f^{\prime}(x)$ is increasing.
- If f is continuous on $[a, b]$ and twice differentiable on (a, b), then f is convex on $[a, b]$ if and only if $f^{\prime \prime}(x) \geqslant 0$ on (a, b).

