MATH 118 WINTER 2015 LECTURE 46 (Arr. 8, 2015)

Final Review I: Optimization & Convexity
Theory.
o Mathematical optimization problem:
min/max f(x) subject to a<x<b (ora<z<b,a<zx<b,a<x<b) (1)
Make sure you know the equivalence of maximization and minimization problems.
o Global and local minimizers.
—  Global minimizer:
YV € [a, b], f(zo) < f(x). (2)
— Local minimizer:
30 >0, Va € la, b N (xg—0,z0+9), f(zo) < f(x). (3)
— Interior local minimizer:
zo€ (a,b), 39>0, Vzela,b]N(xog—0,z0+9), f(zo) < f(x). (4)
— Relations:
xo is a global minimizer==-x is a local minimizer; (5)
xo is an interior local minimizer=—=-x is a local minimizer. (6)
Exercise 1. Give counter-examples to the <= direction in (5) and (6).
o Solving optimization problems.
— Basic strategy: Assume that f is differentiable in (a, b).
1. Find all interior local minimizers;

2. Compare values at these interior local minimizers, together with values
at a, b.

Exercise 2. What if f is differentiable in (a, ¢) U (¢, b) for some ¢ € (a, b) but not
differentiable at c?

— Finding all interior local minimizers.
e Candidates for interior local minimizers.
THEOREM. If f is differentiable in (a,b), then f'=0 at all interior local
MINIMIZETS.
Exercise 3. Can f’=0 at points other than interior local minimizers?

e  Which of these points are interior local minimizers?
Let zo € (a, b) satisfy f'(z)=0.

o Criterion 1. If there is 6 >0 such that f’(z) <0 for z € (xo— 0, o)
and f'(z) > 0 for z € (g, xo + J), then zy is an interior local
minimizer.

Exercise 4. Show that this criterion is not necessary for xg to be an
interior local minimizer.



o Criterion 2. If f”(z¢) >0 then x( is an interior local minimizer.
Exercise 5. Show that this criterion is not necessary.
Make sure you know the corresponding criteria for maximizers.

Examples.

Example 1. Solve

3
max/minf(x):%—sz—l—?)x—l—l st 0<z<4. (7)
Solution. We have
fl(x)=2>—4x+3 (8)
So f'(z)=0=x1,2=1,3. Now compare
7 7

Therefore the global minimizers are 0, 3, global maximizers are 1, 4.

Example 2. Find all local minimizers of f(z)=2sinz + cos2z for —oco <z < 0.
Solution. We have

f'(x)=2cosz —2sin2x=2(2sinz — 1) cos z. (10)
Setting f'(x) =0 we have x =2 k:7r+%, 2k7r+5?7r, k:7r—|—g, ke€Z. As f(x) is periodic with

T b7 w 37

period 2 7, we only need to test the points e 5 To see which of them are local

minimizers we calculate
f"(x)=—2sinx —4cos2zx (11)

and further

n(TY n( 5T\ _ _ f/(z): (37 _
(%)= 3,f(6> 5, 1"(5 2,f(2 6. (12)
Thus we see that the local minimizers are kw + g, k€.

Example 3. Find all local minimizers and maximizers to

fx)=(z—1)|z|*? over —1<z<1. (13)
Solution. We notice that f(z) is not differentiable at z =0. At other points we have
N DT —2

Thus f/(z)=0= 9= % Thus we have four candidates for local minimizers/maximizers:
2

-1,0, %, 1.

o —1. We have f/(x)>0 for x € (—1,0). Therefore —1 is a local minimizer.

o 0. We have f/(x)>0 for x € (—1,0) and f'(x) <0 for x € (0,%). Therefore 0 is a local

maximizer.

o % We have f/(z) <0 for z € (0,%) and f'(z)>0for z e (%,1). Therefore % is a local

minimizer.



o 1. We have f'(x)>0 for z € (%, 1). Therefore 1 is a local maximizer.

Convexity.
o Definition.
— A function f:[a, b] — R is convex if and only if
Vr,y€la,b], VA€[0,1], fAz+1=XN)y) <A f(@)+(1=X) f(y). (15)
— A function f:[a, b] — R is concave if and only if
Vo,y€la,b], VAE€0,1],  fAaz+(1-N)y)=Afl@)+(1-X) f(y). (16)
o Properties.
— fisconvexon [a,b] <= Vzi,...,2p € [a,b],V A1, .. A\ Z 0, N\ + -+ A =1,

fzi+ -+ xn) <A f(1) + -+ A f2n). (17)

—  fis convex on [a, b] <= Va <z <y < z<b, f(i:;”(y) > f(y;:i‘(w) —
)

Va<r<y<z<b, 1E) = f=

z—x y—x

—  f is convex on [a, b] then f is continuous on (a, b).
o Checking convexity.

— If f is continuous on [a, b] and differentiable on (a, b), then f is convex on [a, ]
if and only if f’(z) is increasing.

— If f is continuous on [a, b] and twice differentiable on (a, b), then f is convex
on [a, b] if and only if f”(x)>0 on (a,b).
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