
Math 118 Winter 2015 Lecture 44 (Apr. 1, 2015)

Note. This lecture is based on Chapters 2, 4, 6 of Irrational Numbers by Ivan Niven, The
Mathematical Association of America, 1956.

� Irrationality of certain numbers.

� Irrationality of �.

Theorem 1. �2 is irrational.

Proof. Assume �2= a

b
for some a; b2Z; (a; b)= 1; b > 0. De�ne

f(x)= xn (1¡x)n
n!

: (1)

Exercise 1. Prove that for every j 2N[f0g, f (j)(0); f (j)(1)2Z.

Now de�ne

F (x) := bn
�
�2n f(x)¡�2n¡2 f 00(x)+�2n¡4 f (4)(x)¡ ���+(¡1)n f (2n)(x)

�
: (2)

Exercise 2. Prove that F (0); F (1)2Z.

Exercise 3. Prove that

d

dx
[F 0(x) sin(�x)¡�F (x) cos(�x)]=�2 an f(x) sin(�x): (3)

Therefore

� an
Z
0

1

f(x) sin(�x) dx=F (1)+F (0): (4)

Now notice that 0< f(x) sin(�x)< 1

n!
for x2 (0; 1). Therefore

0<�an
Z
0

1

f(x) sin(�x) dx< �an

n!
: (5)

Exercise 4. Prove that there is n02N such that

0<�an
Z
0

1

f(x) sin(�x) dx< 1: (6)

This gives a contradiction as F (0)+F (1)2Z. �

� Irrationality of certain numbers.

Theorem 2. For any rational number r=/ 0, cos r is irrational.

Proof. Wlog r= a

b
where a; b2N. We assume cos r= d

k
for d; k 2Z.

Now de�ne

f(x)= xp¡1 (a¡ b x)2p (2a¡ b x)p¡1
(p¡ 1)! = (r¡x)2p [r2¡ (r¡x)2]p¡1 b3p¡1

(p¡ 1)! (7)

where p is some odd prime greater than a.

Exercise 5. Prove that f (j)(0)2Z for every j 2N[f0g.

Now de�ne

F (x)= f(x)¡ f 00(x)+ f (4)(x)¡ ��� ¡ f (4p¡2)(x): (8)



Exercise 6. Prove that F 0(r)= 0.

Exercise 7. Prove that Z
0

r

f(x) sin x dx=F (0)¡F (r) cos r: (9)

Exercise 8. Prove that f (j)(0) is a multiple of p unless j = p ¡ 1, and that f (p¡1)(0) =
a2p (2 a)p¡1.

Now as p>a, we see that F (0)= q co-prime with p.
Next we study F (r). By (7) we easily see that

f(r¡x)= x2p (r2¡x2)p¡1 b3p¡1
(p¡ 1)! = x2p (a2¡ b2x2)p¡1 bp+1

(p¡ 1)! : (10)

Exercise 9. Prove that f (j)(r) is divisible by p for every j 2N[f0g and thus pjF (r).

Therefore F (r)= pm for some m2Z. As cos r= d

k
we have

k

Z
0

r

f(x) sinxdx= k q¡ pmd: (11)

Exercise 10. Show that for large enough p,����k Z
0

r

f(x) sin x dx
����< 1; (12)

and conclude that k q¡ pmd=0.

Exercise 11. Prove that there is a contradiction now. �

Exercise 12. Prove � 2/Q in one sentence using Theorem 2.

Exercise 13. Prove the following.

¡ For any rational number r=/ 0, sin r is irrational.

¡ For any rational number r=/ 0, tan r is irrational.

(Hint:1 )

Problem 1. For any rational number r=/ 0, cosh r= er+ e¡r

2
is irrational. (Hint:2 )

� Properties of irrational numbers.

� Approximation by rational numbers.

Theorem 3. Let �2R be irrational. Then there are in�nitely many rationals h

k
such

that
����¡ h

k

���< 1

k2
.

Proof. Wlog assume � > 0. Let fxg denote the fractional part of x, for example
f�g= 0.1415926:::

Now let n2N be arbitrary. Consider the n+1 numbers

0; f�g; f2�g; :::;fn�g2 [0; 1): (13)

If we divide [0; 1) into n intervals
h
0; 1

n

�
;
h
1

n
;
2

n

�
; :::;

h
n¡ 1
n
; 1

�
, we see that two of the

n+1 numbers must fall in the same interval. Thus there are k1; k22f0;1; :::; ng such
that jfk1�g¡ fk2�gj< 1

n
. Let k := jk2¡ k1j.

1. cos2 r.

2. F (x)= f(x)+ f 00(x) + f(4)(x) + ���+ f(4p¡2)(x).



Exercise 14. Prove that there is h2Z such that jk �¡hj< 1

n
and this gives

���¡ h

k

��< 1

nk
6 1

k2
.

Thus we have shown that for every n2N, there is k2f1; 2; :::; ng and h2Z such
that

����¡ h

k

���< 1

nk
6 1

k2
. Denote by kn the largest of such k for a given n.

Exercise 15. Prove that limn!1kn =1 and therefore there are in�nitely many h

k
satisfying���¡ h

k

��< 1

k2
. (Hint:3 ) �

Exercise 16. Let r 2Q. Prove that there is b 2 N such that
��r ¡ h

k

�� > 1

b k
for all rationals h

k

unless h

k
= r.

� The �most irrational� number.

Remark 4. Through application of the theory of continued fractions, Theorem 3 can
be improved as follows.

Theorem. Let � be irrational. Then there are in�nitely many rational numbers h

k
such that �����¡ h

k

����< 1
5

p
k2
: (14)

Proof. See Chapter 6 of Irrational Numbers by Ivan Niven. �

Theorem 5. Let �= 1+ 5
p

2
and c > 5

p
. Then there are only �nitely many rational

numbers h

k
(note that we assume h; k to be co-prime) such that�����¡ h

k

����< 1
c k2

: (15)

Proof. Let's see what are the restrictions for
����¡ h

k

���< 1

c k2
. Write 5

p
+1

2
¡ h

k
= 1

x k2
.

Then jxj>c> 5
p

. Rearranging, we have

1
x k
¡ 5
p

k

2
= k

2
¡h: (16)

Squaring and simplifying, we have

1
x2 k2

¡ 5
p

x
=h2¡hk¡ k2: (17)

Now we check ����� 1
x2 k2

¡ 5
p

x

�����< 1
k2
+ 5
p

c
: (18)

Thus there is k02N such that k >k0=) 1

k2
+ 5
p

c
< 1. As h2¡h k¡ k22Z, if k >k0

there must hold h2 ¡ h k ¡ k2 = 0. But this is not possible as (h; k) = 1. Therefore��� 1+ 5
p

2
¡ h

k

���< 1

c k2
implies k6 k0 and the proof ends. �

Remark 6. The following theorem earned Klaus Roth (1925 � ) a Fields Medal in
1958.

3. Assume the contrary. Let K=maxkn. Show that jK�¡hj< 1

n
cannot hold as n¡!1.



Theorem 7. Let �2R. If there are s>2 and in�nitely many rationals h

k
such that�����¡ h

k

����< 1
ks
; (19)

then � is transcendental.

Note that a number � is transcendental if an�n+ ���+a1�+a0=/ 0 for any n2N
and an; :::; a02Q.

� Ergodicity.

Definition 8. We say a sequence of numbers �1; �2; ::: 2 [0; 1] is �uniformly
distributed� in [0; 1] if and only if for every I = [a; b]� [0; 1], there holds

lim
n!1

n(I)
n

= b¡ a (20)

where n(I)=number of �1; :::; �n that lie in [a; b].

Exercise 17. Let r be rational. Prove that frg; f2 rg; ::: is not uniformly distributed in [0; 1].

Theorem 9. Let � be irrational. Then f�g;f2 �g; ::: is uniformly distributed in [0;1].

Proof. Let's �rst assume the following result:

Theorem 10. f�ng� [0; 1] is uniformly distributed if

lim
n!1

1
n

X
j=1

n

cos(2�m�j)= lim
n!1

1
n

X
j=1

n

sin(2�m�j)= 0 (21)

for every m2N.

Assuming Theorem 10 now, the uniform distribution of fn�g becomes obvious.

Exercise 18. Prove that

lim
n!1

1

n

X
j=1

n

cos(2 �mj�)= lim
n!1

1

n

X
j=1

n

sin(2 �mj�)= 0 (22)

(Hint:4 ) �

Proof. (of Theorem 10) We will give a �pseudo-proof� here to illustrate the main
idea. For the true proof, see �6.4 of Irrational Numbers by Ivan Niven.

Let [a; b] � [0; 1] be arbitrary. We try to prove (20) assuming (21). De�ne the

function g(x) :=
�
1 x2 [a; b]
0 x2/ [a; b] . Pretend

5 that the following holds uniformly on [0;1]:

g(x)= a0+
X
m=1

1

[am cos(2�mx)+ bm sin(2�mx)]: (23)

Exercise 19. Prove that a0= b¡a.

Exercise 20. Prove that jamj; jbmj6 2 for all m2N. (Hint:6 )

4. Review our proof for convergence of
P
n=1
1 sin(nx)

n
.

5. (23) does not hold uniformly for x2 [0; 1]. But this can be �xed through some technical approximation argument.



We observe that

n([a; b]) =
X
j=1

n

g(�j): (24)

Now let "> 0 be arbitrary. By the uniform convergence of (23) there is M1 such that

8x2 [0; 1];

����� X
m=M1

1

[am cos(2�mx)+ bm sin(2�mx)]

�����< "
2
: (25)

On the other hand, by assumption (20) there is N1 such that

8n>N1; 8m6M1;

������ 1nXj=1
n

cos(2�m�j)

������;
������ 1n X

j=1

n

sin(2�m�j)

������< "
8M1

: (26)

Now we calculate, for n>maxfN1;M1g,

n([a; b])
n

= 1
n

X
j=1

n

g(�j)

= (b¡ a)+ 1
n

X
j=1

n
" X
m=M1+1

1

[am cos(2�m�j)+ bm sin(2�m�j)]

#

+1
n

X
j=1

n
" X
m=1

M1

[am cos(2�m�j)+ bm sin(2�m�j)]

#
: (27)

Now clearly������ 1n X
j=1

n
" X
m=M1+1

1
[am cos(2�m�j)+ bm sin(2�m�j)]

#������< "
2
: (28)

On the other hand, we can switch the order of summation in the �rst term to obtain������ 1n X
j=1

n
" X
m=1

M1

am cos(2�m�j)

#������=
������Xm=1

M1

am

24 1
n

X
j=1

n

cos(2�m�j)

35������< "
4
: (29)

Similarly ������ 1n X
j=1

n
" X
m=1

M1

bm sin(2�m�j)

#������< "
4
: (30)

Thus we have, for n > max fN1; M1g,
���n([a; b])

n
¡ (b ¡ a)

��� < " and the conclusion
follows. �

Problem 2. (Ergodicity) Let �2Qc. Let f(x) be continuous on [0; 1]. Prove

lim
n¡!1

f(�)+ f(2�)+ ���+ f(n�)
n

=

Z
0

1

f(x) dx: (31)

Show that (31) does not hold if �2Q. Does (31) still hold if we only assume f(x) to be Riemann
integrable on [0; 1]?

6. Multiply (23) by cos(2�mx) (or sin(2�mx)) and then integrate.
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