Math 118 Winter 2015 Lecture 44 (Apr. 1, 2015)

Note. This lecture is based on Chapters 2, 4, 6 of Irrational Numbers by Ivan Niven, The Mathematical Association of America, 1956.

- Irrationality of certain numbers.
- Irrationality of π.

TheOrem 1. π^{2} is irrational.
Proof. Assume $\pi^{2}=\frac{a}{b}$ for some $a, b \in \mathbb{Z},(a, b)=1, b>0$. Define

$$
\begin{equation*}
f(x)=\frac{x^{n}(1-x)^{n}}{n!} \tag{1}
\end{equation*}
$$

Exercise 1. Prove that for every $j \in \mathbb{N} \cup\{0\}, f^{(j)}(0), f^{(j)}(1) \in \mathbb{Z}$.
Now define

$$
\begin{equation*}
F(x):=b^{n}\left[\pi^{2 n} f(x)-\pi^{2 n-2} f^{\prime \prime}(x)+\pi^{2 n-4} f^{(4)}(x)-\cdots+(-1)^{n} f^{(2 n)}(x)\right] \tag{2}
\end{equation*}
$$

Exercise 2. Prove that $F(0), F(1) \in \mathbb{Z}$.
Exercise 3. Prove that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} x}\left[F^{\prime}(x) \sin (\pi x)-\pi F(x) \cos (\pi x)\right]=\pi^{2} a^{n} f(x) \sin (\pi x) \tag{3}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\pi a^{n} \int_{0}^{1} f(x) \sin (\pi x) \mathrm{d} x=F(1)+F(0) \tag{4}
\end{equation*}
$$

Now notice that $0<f(x) \sin (\pi x)<\frac{1}{n!}$ for $x \in(0,1)$. Therefore

$$
\begin{equation*}
0<\pi a^{n} \int_{0}^{1} f(x) \sin (\pi x) \mathrm{d} x<\frac{\pi a^{n}}{n!} \tag{5}
\end{equation*}
$$

Exercise 4. Prove that there is $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
0<\pi a^{n} \int_{0}^{1} f(x) \sin (\pi x) \mathrm{d} x<1 \tag{6}
\end{equation*}
$$

This gives a contradiction as $F(0)+F(1) \in \mathbb{Z}$.

- Irrationality of certain numbers.

ThEOREM 2. For any rational number $r \neq 0, \cos r$ is irrational.
Proof. Wlog $r=\frac{a}{b}$ where $a, b \in \mathbb{N}$. We assume $\cos r=\frac{d}{k}$ for $d, k \in \mathbb{Z}$.
Now define

$$
\begin{equation*}
f(x)=\frac{x^{p-1}(a-b x)^{2 p}(2 a-b x)^{p-1}}{(p-1)!}=\frac{(r-x)^{2 p}\left[r^{2}-(r-x)^{2}\right]^{p-1} b^{3 p-1}}{(p-1)!} \tag{7}
\end{equation*}
$$

where p is some odd prime greater than a.
Exercise 5. Prove that $f^{(j)}(0) \in \mathbb{Z}$ for every $j \in \mathbb{N} \cup\{0\}$.
Now define

$$
\begin{equation*}
F(x)=f(x)-f^{\prime \prime}(x)+f^{(4)}(x)-\cdots-f^{(4 p-2)}(x) \tag{8}
\end{equation*}
$$

Exercise 6. Prove that $F^{\prime}(r)=0$.
Exercise 7. Prove that

$$
\begin{equation*}
\int_{0}^{r} f(x) \sin x \mathrm{~d} x=F(0)-F(r) \cos r . \tag{9}
\end{equation*}
$$

Exercise 8. Prove that $f^{(j)}(0)$ is a multiple of p unless $j=p-1$, and that $f^{(p-1)}(0)=$ $a^{2 p}(2 a)^{p-1}$.

Now as $p>a$, we see that $F(0)=q$ co-prime with p.
Next we study $F(r)$. By (7) we easily see that

$$
\begin{equation*}
f(r-x)=\frac{x^{2 p}\left(r^{2}-x^{2}\right)^{p-1} b^{3 p-1}}{(p-1)!}=\frac{x^{2 p}\left(a^{2}-b^{2} x^{2}\right)^{p-1} b^{p+1}}{(p-1)!} \tag{10}
\end{equation*}
$$

Exercise 9. Prove that $f^{(j)}(r)$ is divisible by p for every $j \in \mathbb{N} \cup\{0\}$ and thus $p \mid F(r)$.
Therefore $F(r)=p m$ for some $m \in \mathbb{Z}$. As $\cos r=\frac{d}{k}$ we have

$$
\begin{equation*}
k \int_{0}^{r} f(x) \sin x \mathrm{~d} x=k q-p m d \tag{11}
\end{equation*}
$$

Exercise 10. Show that for large enough p,

$$
\begin{equation*}
\left|k \int_{0}^{r} f(x) \sin x \mathrm{~d} x\right|<1 \tag{12}
\end{equation*}
$$

and conclude that $k q-p m d=0$.
Exercise 11. Prove that there is a contradiction now.
Exercise 12. Prove $\pi \notin \mathbb{Q}$ in one sentence using Theorem 2.
Exercise 13. Prove the following.

- For any rational number $r \neq 0, \sin r$ is irrational.
- For any rational number $r \neq 0, \tan r$ is irrational.
(Hint: ${ }^{1}$)
Problem 1. For any rational number $r \neq 0, \cosh r=\frac{e^{r}+e^{-r}}{2}$ is irrational. (Hint: ${ }^{2}$)
- Properties of irrational numbers.
- Approximation by rational numbers.

THEOREM 3. Let $\alpha \in \mathbb{R}$ be irrational. Then there are infinitely many rationals $\frac{h}{k}$ such that $\left|\alpha-\frac{h}{k}\right|<\frac{1}{k^{2}}$.

Proof. Wlog assume $\alpha>0$. Let $\{x\}$ denote the fractional part of x, for example $\{\pi\}=0.1415926 \ldots$

Now let $n \in \mathbb{N}$ be arbitrary. Consider the $n+1$ numbers

$$
\begin{equation*}
0,\{\alpha\},\{2 \alpha\}, \ldots,\{n \alpha\} \in[0,1) \tag{13}
\end{equation*}
$$

If we divide $[0,1)$ into n intervals $\left[0, \frac{1}{n}\right),\left[\frac{1}{n}, \frac{2}{n}\right), \ldots,\left[\frac{n-1}{n}, 1\right)$, we see that two of the $n+1$ numbers must fall in the same interval. Thus there are $k_{1}, k_{2} \in\{0,1, \ldots, n\}$ such that $\left|\left\{k_{1} \alpha\right\}-\left\{k_{2} \alpha\right\}\right|<\frac{1}{n}$. Let $k:=\left|k_{2}-k_{1}\right|$.

[^0]Exercise 14. Prove that there is $h \in \mathbb{Z}$ such that $|k \alpha-h|<\frac{1}{n}$ and this gives $\left|\alpha-\frac{h}{k}\right|<\frac{1}{n k} \leqslant \frac{1}{k^{2}}$.
Thus we have shown that for every $n \in \mathbb{N}$, there is $k \in\{1,2, \ldots, n\}$ and $h \in \mathbb{Z}$ such that $\left|\alpha-\frac{h}{k}\right|<\frac{1}{n k} \leqslant \frac{1}{k^{2}}$. Denote by k_{n} the largest of such k for a given n.

Exercise 15. Prove that $\lim _{n \rightarrow \infty} k_{n}=\infty$ and therefore there are infinitely many $\frac{h}{k}$ satisfying $\left|\alpha-\frac{h}{k}\right|<\frac{1}{k^{2}}$. Hint: 3)

Exercise 16. Let $r \in \mathbb{Q}$. Prove that there is $b \in \mathbb{N}$ such that $\left|r-\frac{h}{k}\right| \geqslant \frac{1}{b k}$ for all rationals $\frac{h}{k}$ unless $\frac{h}{k}=r$.

- The "most irrational" number.

Remark 4. Through application of the theory of continued fractions, Theorem 3 can be improved as follows.

THEOREM. Let α be irrational. Then there are infinitely many rational numbers $\frac{h}{k}$ such that

$$
\begin{equation*}
\left|\alpha-\frac{h}{k}\right|<\frac{1}{\sqrt{5} k^{2}} \tag{14}
\end{equation*}
$$

Proof. See Chapter 6 of Irrational Numbers by Ivan Niven.
ThEOREM 5. Let $\alpha=\frac{1+\sqrt{5}}{2}$ and $c>\sqrt{5}$. Then there are only finitely many rational numbers $\frac{h}{k}$ (note that we assume h, k to be co-prime) such that

$$
\begin{equation*}
\left|\alpha-\frac{h}{k}\right|<\frac{1}{c k^{2}} \tag{15}
\end{equation*}
$$

Proof. Let's see what are the restrictions for $\left|\alpha-\frac{h}{k}\right|<\frac{1}{c k^{2}}$. Write $\frac{\sqrt{5}+1}{2}-\frac{h}{k}=\frac{1}{x k^{2}}$. Then $|x|>c>\sqrt{5}$. Rearranging, we have

$$
\begin{equation*}
\frac{1}{x k}-\frac{\sqrt{5} k}{2}=\frac{k}{2}-h \tag{16}
\end{equation*}
$$

Squaring and simplifying, we have

$$
\begin{equation*}
\frac{1}{x^{2} k^{2}}-\frac{\sqrt{5}}{x}=h^{2}-h k-k^{2} \tag{17}
\end{equation*}
$$

Now we check

$$
\begin{equation*}
\left|\frac{1}{x^{2} k^{2}}-\frac{\sqrt{5}}{x}\right|<\frac{1}{k^{2}}+\frac{\sqrt{5}}{c} \tag{18}
\end{equation*}
$$

Thus there is $k_{0} \in \mathbb{N}$ such that $k>k_{0} \Longrightarrow \frac{1}{k^{2}}+\frac{\sqrt{5}}{c}<1$. As $h^{2}-h k-k^{2} \in \mathbb{Z}$, if $k>k_{0}$ there must hold $h^{2}-h k-k^{2}=0$. But this is not possible as $(h, k)=1$. Therefore $\left|\frac{1+\sqrt{5}}{2}-\frac{h}{k}\right|<\frac{1}{c k^{2}}$ implies $k \leqslant k_{0}$ and the proof ends.

Remark 6. The following theorem earned Klaus Roth (1925 -) a Fields Medal in 1958.

TheOrem 7. Let $\alpha \in \mathbb{R}$. If there are $s>2$ and infinitely many rationals $\frac{h}{k}$ such that

$$
\begin{equation*}
\left|\alpha-\frac{h}{k}\right|<\frac{1}{k^{s}}, \tag{19}
\end{equation*}
$$

then α is transcendental.
Note that a number α is transcendental if $a_{n} \alpha^{n}+\cdots+a_{1} \alpha+a_{0} \neq 0$ for any $n \in \mathbb{N}$ and $a_{n}, \ldots, a_{0} \in \mathbb{Q}$.

- Ergodicity.

DEFINITION 8. We say a sequence of numbers $\alpha_{1}, \alpha_{2}, \ldots \in[0,1]$ is "uniformly distributed" in $[0,1]$ if and only if for every $I=[a, b] \subseteq[0,1]$, there holds

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{n(I)}{n}=b-a \tag{20}
\end{equation*}
$$

where $n(I)=$ number of $\alpha_{1}, \ldots, \alpha_{n}$ that lie in $[a, b]$.
Exercise 17. Let r be rational. Prove that $\{r\},\{2 r\}, \ldots$ is not uniformly distributed in $[0,1]$.
Theorem 9. Let α be irrational. Then $\{\alpha\},\{2 \alpha\}, \ldots$ is uniformly distributed in $[0,1]$.
Proof. Let's first assume the following result:
THEOREM 10. $\left\{\beta_{n}\right\} \subset[0,1]$ is uniformly distributed if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \cos \left(2 \pi m \beta_{j}\right)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \sin \left(2 \pi m \beta_{j}\right)=0 \tag{21}
\end{equation*}
$$

for every $m \in \mathbb{N}$.
Assuming Theorem 10 now, the uniform distribution of $\{n \alpha\}$ becomes obvious.
Exercise 18. Prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \cos (2 \pi m j \alpha)=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} \sin (2 \pi m j \alpha)=0 \tag{22}
\end{equation*}
$$

(Hint: ${ }^{4}$)
Proof. (of Theorem 10) We will give a "pseudo-proof" here to illustrate the main idea. For the true proof, see $\S 6.4$ of Irrational Numbers by Ivan Niven.

Let $[a, b] \subseteq[0,1]$ be arbitrary. We try to prove (20) assuming (21). Define the function $g(x):=\left\{\begin{array}{ll}1 & x \in[a, b] \\ 0 & x \notin[a, b]\end{array}\right.$. Pretend 5 that the following holds uniformly on $[0,1]$:

$$
\begin{equation*}
g(x)=a_{0}+\sum_{m=1}^{\infty}\left[a_{m} \cos (2 \pi m x)+b_{m} \sin (2 \pi m x)\right] \tag{23}
\end{equation*}
$$

Exercise 19. Prove that $a_{0}=b-a$.
Exercise 20. Prove that $\left|a_{m}\right|,\left|b_{m}\right| \leqslant 2$ for all $m \in \mathbb{N}$. (Hint: ${ }^{6}$)

[^1]We observe that

$$
\begin{equation*}
n([a, b])=\sum_{j=1}^{n} g\left(\beta_{j}\right) . \tag{24}
\end{equation*}
$$

Now let $\varepsilon>0$ be arbitrary. By the uniform convergence of (23) there is M_{1} such that

$$
\begin{equation*}
\forall x \in[0,1], \quad\left|\sum_{m=M_{1}}^{\infty}\left[a_{m} \cos (2 \pi m x)+b_{m} \sin (2 \pi m x)\right]\right|<\frac{\varepsilon}{2} . \tag{25}
\end{equation*}
$$

On the other hand, by assumption (20) there is N_{1} such that

$$
\begin{equation*}
\forall n>N_{1}, \forall m \leqslant M_{1}, \quad\left|\frac{1}{n} \sum_{j=1}^{n} \cos \left(2 \pi m \beta_{j}\right)\right|,\left|\frac{1}{n} \sum_{j=1}^{n} \sin \left(2 \pi m \beta_{j}\right)\right|<\frac{\varepsilon}{8 M_{1}} . \tag{26}
\end{equation*}
$$

Now we calculate, for $n>\max \left\{N_{1}, M_{1}\right\}$,

$$
\begin{align*}
\frac{n([a, b])}{n}= & \frac{1}{n} \sum_{j=1}^{n} g\left(\beta_{j}\right) \\
= & (b-a)+\frac{1}{n} \sum_{j=1}^{n}\left[\sum_{m=M_{1}+1}^{\infty}\left[a_{m} \cos \left(2 \pi m \beta_{j}\right)+b_{m} \sin \left(2 \pi m \beta_{j}\right)\right]\right] \\
& +\frac{1}{n} \sum_{j=1}^{n}\left[\sum_{m=1}^{M_{1}}\left[a_{m} \cos \left(2 \pi m \beta_{j}\right)+b_{m} \sin \left(2 \pi m \beta_{j}\right)\right]\right] . \tag{27}
\end{align*}
$$

Now clearly

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{j=1}^{n}\left[\sum_{m=M_{1}+1}^{\infty}\left[a_{m} \cos \left(2 \pi m \beta_{j}\right)+b_{m} \sin \left(2 \pi m \beta_{j}\right)\right]\right]\right|<\frac{\varepsilon}{2} . \tag{28}
\end{equation*}
$$

On the other hand, we can switch the order of summation in the first term to obtain

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{j=1}^{n}\left[\sum_{m=1}^{M_{1}} a_{m} \cos \left(2 \pi m \beta_{j}\right)\right]\right|=\left|\sum_{m=1}^{M_{1}} a_{m}\left[\frac{1}{n} \sum_{j=1}^{n} \cos \left(2 \pi m \beta_{j}\right)\right]\right|<\frac{\varepsilon}{4} . \tag{29}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\left|\frac{1}{n} \sum_{j=1}^{n}\left[\sum_{m=1}^{M_{1}} b_{m} \sin \left(2 \pi m \beta_{j}\right)\right]\right|<\frac{\varepsilon}{4} . \tag{30}
\end{equation*}
$$

Thus we have, for $n>\max \left\{N_{1}, M_{1}\right\},\left|\frac{n([a, b])}{n}-(b-a)\right|<\varepsilon$ and the conclusion follows.

Problem 2. (Ergodicity) Let $\alpha \in \mathbb{Q}^{c}$. Let $f(x)$ be continuous on [0,1$]$. Prove

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{f(\alpha)+f(2 \alpha)+\cdots+f(n \alpha)}{n}=\int_{0}^{1} f(x) \mathrm{d} x . \tag{31}
\end{equation*}
$$

Show that (31) does not hold if $\alpha \in \mathbb{Q}$. Does (31) still hold if we only assume $f(x)$ to be Riemann integrable on $[0,1]$?

[^2]
[^0]: 1. $\cos 2 r$.
 2. $F(x)=f(x)+f^{\prime \prime}(x)+f^{(4)}(x)+\cdots+f^{(4 p-2)}(x)$.
[^1]: 4. Review our proof for convergence of $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n}$.
 5. (23) does not hold uniformly for $x \in[0,1]$. But this can be fixed through some technical approximation argument.
[^2]: 6. Multiply (23) by $\cos (2 \pi m x)$ (or $\sin (2 \pi m x))$ and then integrate.
