MATH 118 WINTER 2015 LECTURE 44 (Arr. 1, 2015)

Note. This lecture is based on Chapters 2, 4, 6 of Irrational Numbers by Ivan Niven, The
Mathematical Association of America, 1956.

e Irrationality of certain numbers.

o Irrationality of 7.
THEOREM 1. 72 is irrational.

Proof. Assume 7 :% for some a, b€ Z,(a,b)=1,b>0. Define

n(]— )"
Flay =20 (1)
Exercise 1. Prove that for every j € NU{0}, f9(0), fP(1) € z.
Now define
F(x):=b"[7" f(z) =772 f" (@) + 02~ fO (@) =+ (=1)" fOD(@) ] (2)

Exercise 2. Prove that F(0), F(1) € Z.

Exercise 3. Prove that
dim[F’(:c) sin(rz) — 7 F(x) cos(rz)] = w2 a™ f(z) sin(r x). (3)
Therefore

1
Wa”A f(x)sin(rx)de=F(1)+ F(0). (4)

Now notice that 0 < f(z)sin(mz) < % for x € (0,1). Therefore

1 n
0<7Ta”/0 f(x)sin(rx)dz < 7;?! . (5)
Exercise 4. Prove that there is ng € N such that
O<7ra"/01 F(z)sin(rz) dz < 1. 6)
This gives a contradiction as F'(0) 4+ F (1) € Z. O

o Irrationality of certain numbers.
THEOREM 2. For any rational number r #0, cosr is irrational.

Proof. Wlog r :% where a, b€ IN. We assume cosr :% for d, k€ Z.

Now define
_ 2P~ a—bx)?P (2a —bx)P~! _(r— x)%P [7“2 —(r— x)z]p_l p3r—1 (7)
a (p—1)! a (p—1)!

where p is some odd prime greater than a.

(=)

Exercise 5. Prove that f()(0) € Z for every j € NU{0}.
Now define

F(x)= f(z) = f"(x)+ [ (@) = = fEP7(2). (8)



Exercise 6. Prove that F'(r)=0.
Exercise 7. Prove that
/ f(x)sinzdx=F(0)— F(r)cosr. 9)
0
Exercise 8. Prove that f()(0) is a multiple of p unless j = p — 1, and that fP~1(0) =
a®? (2a)P~ 1.

Now as p > a, we see that F'(0) = ¢ co-prime with p.
Next we study F'(r). By (7) we easily see that

x2p (7.2 _ x2)p—1 b3p—1 B x2p (CL2 _ b2 x2)p—1 bp+1

flr—z)= = (10)
(p—1)! (p—1)!
Exercise 9. Prove that f()(r) is divisible by p for every j € NU{0} and thus p| F(r).
Therefore F(r) = pm for some m € Z. As cosr :% we have
T
k/ f(x)sinzdz=kq—pmd. (11)
0
Exercise 10. Show that for large enough p,
‘kz/ f(z)sinzdz| <1, (12)
0
and conclude that kq—pmd=0.
Exercise 11. Prove that there is a contradiction now. O

Exercise 12. Prove 7w ¢ Q in one sentence using Theorem 2.
Exercise 13. Prove the following.

—  For any rational number r #0, sin r is irrational.

—  For any rational number r#0, tanr is irrational.
(Hint:! )

Problem 1. For any rational number r#0, cosh r =<

Fet L o
5— is irrational. (Hint:? )

e Properties of irrational numbers.

o Approximation by rational numbers.
THEOREM 3. Let a € R be irrational. Then there are infinitely many rationals % such
h 1
Proof. Wlog assume o > 0. Let {x} denote the fractional part of x, for example
{m}=0.1415926...
Now let n € N be arbitrary. Consider the n 4+ 1 numbers

0,{a},{2a},....,{na}e]0,1). (13)

If we divide [0,1) into n intervals [0, %), {%,%), ey {n; 1, 1), we see that two of the

n+ 1 numbers must fall in the same interval. Thus there are k1, k2€{0,1,...,n} such

that |{k1a} — {kaa}| <. Let k= |ky— kil.

1. cos2r.

2. F(@)= f(@)+ (@) + O @)+ + FOr D).



Exercise 14. Prove that there is h € Z such that |[ka —h|< l and this gives ‘a - ’ <— nk < kl2
Thus we have shown that for every n € N, thereis k€ {1,2,...,n} and h € Z such

that ‘a — ‘ <= . Denote by k,, the largest of such k for a given n.

Exercise 15. Prove that lim,, ...k, = co and therefore there are infinitely many % satisfying

’afﬁ‘ <-L. (Hint:?) O
Bl SR :

Exercise 16. Let r € Q. Prove that there is b € N such that ‘r - %‘ > for all ratlonals =

h
unless =T

1
%
o The “most irrational” number.

Remark 4. Through application of the theory of continued fractions, Theorem 3 can
be improved as follows.

THEOREM. Let « be irrational. Then there are infinitely many rational numbers h

k
such that
h 1
o——| <—. 14
-3 < A -
Proof. See Chapter 6 of Irrational Numbers by Ivan Niven. O

THEOREM 5. Let a= 1+‘[

numbers - (note that we assume h,k to be co-prime) such that

and ¢ > /5. Then there are only finitely many rational

h 1
Proof. Let’s see what are the restrictions for |a — %‘ < 622. Write \/g; LI % = ﬁ
Then |z| >c¢> /5. Rearranging, we have
1 V5k_k
k2 a3 (16)
Squaring and simplifying, we have
1 V5o 2
Now we check
1 V6] 1 V5
2R T | “rt e (18)

Thus there is ko€ N such that k> ko— 5 +2 < 1. As h2—hk — k2 € Z, if k> ko
there must hold h?—hk —k?=0. But thls is not possible as (h, k) = 1. Therefore

‘ - +2\/S ‘ < — implies k < ko and the proof ends. 0

Remark 6. The following theorem earned Klaus Roth (1925 — ) a Fields Medal in
1958.

3. Assume the contrary. Let K =maxk,. Show that |Ka — h| <% cannot hold as n — oo.



THEOREM 7. Let a € R. If there are s >2 and infinitely many rationals % such that

h 1

then o is transcendental.

Note that a number « is transcendental if a, ™+ -+ a1 a4+ ap#0 for any n € N
and an, ..., a0 € Q.

o Ergodicity.

DEFINITION 8. We say a sequence of numbers oy, ag, ... € [0, 1] is “uniformly
distributed” in [0, 1] if and only if for every I =[a,b] C |0, 1], there holds

lim @:b—a (20)

n—oo N

where n(I) = number of au, ..., oy, that lie in [a, b].

Exercise 17. Let  be rational. Prove that {r}, {27}, ... is not uniformly distributed in [0, 1].
THEOREM 9. Let « be irrational. Then {a},{2 o}, ... is uniformly distributed in [0,1].
Proof. Let’s first assume the following result:

THEOREM 10. {(,} C[0,1] is uniformly distributed if

n n

1 1 .
nhfioﬁjzl cos(2mm [3;) :nh_{r;oﬁjzl sin(27m ;) =0 (21)

for every m € N.

Assuming Theorem 10 now, the uniform distribution of {n a} becomes obvious.

Exercise 18. Prove that

n

1 1 ¢
lim = 2 ja) = lim — in(2 o) = 22
im g cos(2mrmja)= lim njgzl sin(2rmja)=0 (22)

n—oo M 4 n—oo

j=1

(Hint:* ) ]

Proof. (or THEOREM 10) We will give a “pseudo-proof” here to illustrate the main
idea. For the true proof, see §6.4 of Irrational Numbers by Ivan Niven.
Let [a, b] C [0, 1] be arbitrary. We try to prove (20) assuming (21). Define the

function g(z):= { (1) i Z B’ Z} . Pretend?® that the following holds uniformly on [0, 1]:
g(z)=ap+ Z [am cos(2mm ) + by, sin(2 mm ). (23)
m=1

Exercise 19. Prove that ap=0—a.

Exercise 20. Prove that |am], |bm| <2 for all m € N. (Hint:6 )

sin (n x)

4. Review our proof for convergence of 37 | "

5. (23) does not hold uniformly for z € [0,1]. But this can be fixed through some technical approximation argument.



We observe that

n

n(la,B) =" 9(8)). (24)

Jj=1

Now let € > 0 be arbitrary. By the uniform convergence of (23) there is M; such that

Vx e[0,1], Z [amcos(2mmx) + by sin(2mm x)] <§. (25)
m=M;
On the other hand, by assumption (20) there is Nj such that
1 1o . €
< - NN . '
Vn > Ny, Vm < My, n; cos(2mm Bj)|, - ]ZI sin(2mm §j)| < ST, (26)
Now we calculate, for n > max { Ny, M; },
n(la,b) _ 1 ,
- EZ 9(5;)
7j=1
1« G :
— (b—a)+ﬁz [ Z [amcos(me/Bj)+bmsm(27rmﬁj)]]
] 1 Lm=M;+1
1 n
+ng mZZI am cos(2mm 3;) + by, sm(27rm,6’J)]] (27)
Now clearly
1o - . 3
. [ Z [amcos(27rmﬁj)—I—bmsm(27rmﬁj)]] <3 (28)
j=1 Lm=M;+1

On the other hand, we can switch the order of summation in the first term to obtain
1A [ & M, = ]
EZ [Z amcos(27rm,6’j)] = Z am E.Z cos(2mm f3;) <7 (29)
j=1 Lm=1 me1 =
Similarly
1 n My -
HZI [Z_l bmsm(27rm5j)] <Z, (30)

Thus we have, for n > max {Ny, M}, n(a b — (b — a)‘ < ¢ and the conclusion
follows. O

Problem 2. (ERGODICITY) Let a € Q¢. Let f(x) be continuous on [0, 1]. Prove

lim f(a)Jrf(2a)+“-+f("0‘):/1 f(z)dz. (31)
0

n—00 n

Show that (31) does not hold if € Q. Does (31) still hold if we only assume f(z) to be Riemann
integrable on [0, 1]?

6. Multiply (23) by cos(27mma) (or sin(27mmx)) and then integrate.
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