MATH 118 WINTER 2015 LECTURE 44 (Apr. 1, 2015)

Note. This lecture is based on Chapters 2, 4, 6 of *Irrational Numbers* by Ivan Niven, The Mathematical Association of America, 1956.

- Irrationality of certain numbers.
 - Irrationality of π .

Theorem 1. π^2 is irrational.

Proof. Assume $\pi^2 = \frac{a}{b}$ for some $a, b \in \mathbb{Z}, (a, b) = 1, b > 0$. Define

$$f(x) = \frac{x^n (1-x)^n}{n!}.$$
 (1)

Exercise 1. Prove that for every $j \in \mathbb{N} \cup \{0\}, f^{(j)}(0), f^{(j)}(1) \in \mathbb{Z}$.

Now define

$$F(x) := b^n \left[\pi^{2n} f(x) - \pi^{2n-2} f''(x) + \pi^{2n-4} f^{(4)}(x) - \dots + (-1)^n f^{(2n)}(x) \right].$$
(2)

Exercise 2. Prove that $F(0), F(1) \in \mathbb{Z}$.

Exercise 3. Prove that

$$\frac{\mathrm{d}}{\mathrm{d}x}[F'(x)\sin(\pi x) - \pi F(x)\cos(\pi x)] = \pi^2 a^n f(x)\sin(\pi x).$$
(3)

Therefore

$$\pi a^n \int_0^1 f(x) \sin(\pi x) \, \mathrm{d}x = F(1) + F(0). \tag{4}$$

Now notice that $0 < f(x) \sin(\pi x) < \frac{1}{n!}$ for $x \in (0, 1)$. Therefore

$$0 < \pi a^n \int_0^1 f(x) \sin(\pi x) \, \mathrm{d}x < \frac{\pi a^n}{n!}.$$
 (5)

Exercise 4. Prove that there is $n_0 \in \mathbb{N}$ such that

$$0 < \pi a^n \int_0^1 f(x) \sin(\pi x) \, \mathrm{d}x < 1.$$
(6)

This gives a contradiction as $F(0) + F(1) \in \mathbb{Z}$.

 \circ $\;$ Irrationality of certain numbers.

THEOREM 2. For any rational number $r \neq 0$, $\cos r$ is irrational.

Proof. Wlog $r = \frac{a}{b}$ where $a, b \in \mathbb{N}$. We assume $\cos r = \frac{d}{k}$ for $d, k \in \mathbb{Z}$. Now define

$$f(x) = \frac{x^{p-1} (a-bx)^{2p} (2a-bx)^{p-1}}{(p-1)!} = \frac{(r-x)^{2p} [r^2 - (r-x)^2]^{p-1} b^{3p-1}}{(p-1)!}$$
(7)

where p is some odd prime greater than a.

Exercise 5. Prove that $f^{(j)}(0) \in \mathbb{Z}$ for every $j \in \mathbb{N} \cup \{0\}$.

Now define

$$F(x) = f(x) - f''(x) + f^{(4)}(x) - \dots - f^{(4p-2)}(x).$$
(8)

Exercise 6. Prove that F'(r) = 0.

Exercise 7. Prove that

$$\int_{0}^{r} f(x) \sin x \, \mathrm{d}x = F(0) - F(r) \cos r.$$
(9)

Exercise 8. Prove that $f^{(j)}(0)$ is a multiple of p unless j = p - 1, and that $f^{(p-1)}(0) = a^{2p} (2a)^{p-1}$.

Now as p > a, we see that F(0) = q co-prime with p. Next we study F(r). By (7) we easily see that

$$f(r-x) = \frac{x^{2p} (r^2 - x^2)^{p-1} b^{3p-1}}{(p-1)!} = \frac{x^{2p} (a^2 - b^2 x^2)^{p-1} b^{p+1}}{(p-1)!}.$$
 (10)

Exercise 9. Prove that $f^{(j)}(r)$ is divisible by p for every $j \in \mathbb{N} \cup \{0\}$ and thus $p \mid F(r)$.

Therefore F(r) = p m for some $m \in \mathbb{Z}$. As $\cos r = \frac{d}{k}$ we have

$$k \int_0^r f(x) \sin x \, \mathrm{d}x = k \, q - p \, m \, d. \tag{11}$$

Exercise 10. Show that for large enough p,

$$\left|k\int_{0}^{r}f(x)\sin x\,\mathrm{d}x\right|<1,\tag{12}$$

and conclude that kq - pmd = 0.

Exercise 11. Prove that there is a contradiction now. \Box

Exercise 12. Prove $\pi \notin \mathbb{Q}$ in one sentence using Theorem 2.

Exercise 13. Prove the following.

- For any rational number $r \neq 0$, sin r is irrational.
- For any rational number $r \neq 0$, $\tan r$ is irrational.

 $(Hint:^1)$

Problem 1. For any rational number
$$r \neq 0$$
, $\cosh r = \frac{e^r + e^{-r}}{2}$ is irrational. (Hint:²)

- Properties of irrational numbers.
 - Approximation by rational numbers.

THEOREM 3. Let $\alpha \in \mathbb{R}$ be irrational. Then there are infinitely many rationals $\frac{h}{k}$ such that $\left|\alpha - \frac{h}{k}\right| < \frac{1}{k^2}$.

Proof. Wlog assume $\alpha > 0$. Let $\{x\}$ denote the fractional part of x, for example $\{\pi\} = 0.1415926...$

Now let $n \in \mathbb{N}$ be arbitrary. Consider the n+1 numbers

$$0, \{\alpha\}, \{2\,\alpha\}, \dots, \{n\,\alpha\} \in [0, 1).$$
(13)

If we divide [0,1) into n intervals $\left[0,\frac{1}{n}\right), \left[\frac{1}{n},\frac{2}{n}\right), ..., \left[\frac{n-1}{n},1\right)$, we see that two of the n+1 numbers must fall in the same interval. Thus there are $k_1, k_2 \in \{0, 1, ..., n\}$ such that $|\{k_1\alpha\} - \{k_2\alpha\}| < \frac{1}{n}$. Let $k := |k_2 - k_1|$.

^{1.} $\cos 2r$.

^{2.} $F(x) = f(x) + f''(x) + f^{(4)}(x) + \dots + f^{(4p-2)}(x)$.

Exercise 14. Prove that there is $h \in \mathbb{Z}$ such that $|k \alpha - h| < \frac{1}{n}$ and this gives $|\alpha - \frac{h}{k}| < \frac{1}{n k} \leq \frac{1}{k^2}$.

Thus we have shown that for every $n \in \mathbb{N}$, there is $k \in \{1, 2, ..., n\}$ and $h \in \mathbb{Z}$ such that $\left| \alpha - \frac{h}{k} \right| < \frac{1}{nk} \leq \frac{1}{k^2}$. Denote by k_n the largest of such k for a given n.

Exercise 15. Prove that $\lim_{n\to\infty} k_n = \infty$ and therefore there are infinitely many $\frac{h}{k}$ satisfying $\left|\alpha - \frac{h}{k}\right| < \frac{1}{k^2}$. (Hint:³)

Exercise 16. Let $r \in \mathbb{Q}$. Prove that there is $b \in \mathbb{N}$ such that $\left|r - \frac{h}{k}\right| \ge \frac{1}{bk}$ for all rationals $\frac{h}{k}$ unless $\frac{h}{k} = r$.

 \circ The "most irrational" number.

Remark 4. Through application of the theory of continued fractions, Theorem 3 can be improved as follows.

THEOREM. Let α be irrational. Then there are infinitely many rational numbers $\frac{h}{k}$ such that

$$\left|\alpha - \frac{h}{k}\right| < \frac{1}{\sqrt{5} k^2}.\tag{14}$$

Proof. See Chapter 6 of *Irrational Numbers* by Ivan Niven.

THEOREM 5. Let $\alpha = \frac{1+\sqrt{5}}{2}$ and $c > \sqrt{5}$. Then there are only finitely many rational numbers $\frac{h}{k}$ (note that we assume h, k to be co-prime) such that

$$\left|\alpha - \frac{h}{k}\right| < \frac{1}{c \, k^2}.\tag{15}$$

Proof. Let's see what are the restrictions for $\left|\alpha - \frac{h}{k}\right| < \frac{1}{ck^2}$. Write $\frac{\sqrt{5}+1}{2} - \frac{h}{k} = \frac{1}{xk^2}$. Then $|x| > c > \sqrt{5}$. Rearranging, we have

$$\frac{1}{x\,k} - \frac{\sqrt{5}\,k}{2} = \frac{k}{2} - h. \tag{16}$$

Squaring and simplifying, we have

$$\frac{1}{x^2 k^2} - \frac{\sqrt{5}}{x} = h^2 - h k - k^2.$$
(17)

Now we check

$$\left|\frac{1}{x^2k^2} - \frac{\sqrt{5}}{x}\right| < \frac{1}{k^2} + \frac{\sqrt{5}}{c}.$$
(18)

Thus there is $k_0 \in \mathbb{N}$ such that $k > k_0 \Longrightarrow \frac{1}{k^2} + \frac{\sqrt{5}}{c} < 1$. As $h^2 - hk - k^2 \in \mathbb{Z}$, if $k > k_0$ there must hold $h^2 - hk - k^2 = 0$. But this is not possible as (h, k) = 1. Therefore $\left|\frac{1+\sqrt{5}}{2} - \frac{h}{k}\right| < \frac{1}{ck^2}$ implies $k \leq k_0$ and the proof ends.

Remark 6. The following theorem earned Klaus Roth (1925 -) a Fields Medal in 1958.

^{3.} Assume the contrary. Let $K = \max k_n$. Show that $|K\alpha - h| < \frac{1}{n}$ cannot hold as $n \longrightarrow \infty$.

THEOREM 7. Let $\alpha \in \mathbb{R}$. If there are s > 2 and infinitely many rationals $\frac{h}{k}$ such that

$$\left|\alpha - \frac{h}{k}\right| < \frac{1}{k^s},\tag{19}$$

then α is transcendental.

Note that a number α is transcendental if $a_n \alpha^n + \cdots + a_1 \alpha + a_0 \neq 0$ for any $n \in \mathbb{N}$ and $a_n, \ldots, a_0 \in \mathbb{Q}$.

• Ergodicity.

DEFINITION 8. We say a sequence of numbers $\alpha_1, \alpha_2, \ldots \in [0, 1]$ is "uniformly distributed" in [0, 1] if and only if for every $I = [a, b] \subseteq [0, 1]$, there holds

$$\lim_{n \to \infty} \frac{n(I)}{n} = b - a \tag{20}$$

where $n(I) = number of \alpha_1, ..., \alpha_n$ that lie in [a, b].

Exercise 17. Let r be rational. Prove that $\{r\}, \{2r\}, \dots$ is not uniformly distributed in [0, 1].

THEOREM 9. Let α be irrational. Then $\{\alpha\}, \{2\alpha\}, \dots$ is uniformly distributed in [0, 1].

Proof. Let's first assume the following result:

THEOREM 10. $\{\beta_n\} \subset [0,1]$ is uniformly distributed if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \cos(2\pi m \beta_j) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \sin(2\pi m \beta_j) = 0$$
(21)

for every $m \in \mathbb{N}$.

Assuming Theorem 10 now, the uniform distribution of $\{n \alpha\}$ becomes obvious.

Exercise 18. Prove that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \cos(2\pi m j \alpha) = \lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} \sin(2\pi m j \alpha) = 0$$
(22)

 $(Hint:^4)$

Proof. (OF THEOREM 10) We will give a "pseudo-proof" here to illustrate the main idea. For the true proof, see §6.4 of *Irrational Numbers* by Ivan Niven.

Let $[a, b] \subseteq [0, 1]$ be arbitrary. We try to prove (20) assuming (21). Define the function $g(x) := \begin{cases} 1 & x \in [a, b] \\ 0 & x \notin [a, b] \end{cases}$. Pretend⁵ that the following holds uniformly on [0, 1]:

$$g(x) = a_0 + \sum_{m=1}^{\infty} \left[a_m \cos(2\pi m x) + b_m \sin(2\pi m x) \right].$$
(23)

Exercise 19. Prove that $a_0 = b - a$.

Exercise 20. Prove that $|a_m|, |b_m| \leq 2$ for all $m \in \mathbb{N}$. (Hint:⁶)

^{4.} Review our proof for convergence of $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n}$.

^{5. (23)} does not hold uniformly for $x \in [0, 1]$. But this can be fixed through some technical approximation argument.

We observe that

$$n([a, b]) = \sum_{j=1}^{n} g(\beta_j).$$
(24)

Now let $\varepsilon > 0$ be arbitrary. By the uniform convergence of (23) there is M_1 such that

$$\forall x \in [0,1], \qquad \left| \sum_{m=M_1}^{\infty} \left[a_m \cos(2\pi m x) + b_m \sin(2\pi m x) \right] \right| < \frac{\varepsilon}{2}. \tag{25}$$

On the other hand, by assumption (20) there is N_1 such that

$$\forall n > N_1, \forall m \leq M_1, \qquad \left| \frac{1}{n} \sum_{j=1}^n \cos(2\pi m \beta_j) \right|, \left| \frac{1}{n} \sum_{j=1}^n \sin(2\pi m \beta_j) \right| < \frac{\varepsilon}{8M_1}.$$
(26)

Now we calculate, for $n > \max\{N_1, M_1\}$,

$$\frac{n([a,b])}{n} = \frac{1}{n} \sum_{j=1}^{n} g(\beta_j)$$

$$= (b-a) + \frac{1}{n} \sum_{j=1}^{n} \left[\sum_{m=M_1+1}^{\infty} \left[a_m \cos(2\pi m \beta_j) + b_m \sin(2\pi m \beta_j) \right] \right]$$

$$+ \frac{1}{n} \sum_{j=1}^{n} \left[\sum_{m=1}^{M_1} \left[a_m \cos(2\pi m \beta_j) + b_m \sin(2\pi m \beta_j) \right] \right].$$
(27)

Now clearly

$$\left|\frac{1}{n}\sum_{j=1}^{n}\left[\sum_{m=M_{1}+1}^{\infty}\left[a_{m}\cos(2\pi m\,\beta_{j})+b_{m}\sin(2\pi m\,\beta_{j})\right]\right]\right| < \frac{\varepsilon}{2}.$$
(28)

On the other hand, we can switch the order of summation in the first term to obtain

$$\left|\frac{1}{n}\sum_{j=1}^{n}\left[\sum_{m=1}^{M_{1}}a_{m}\cos(2\pi m\,\beta_{j})\right]\right| = \left|\sum_{m=1}^{M_{1}}a_{m}\left[\frac{1}{n}\sum_{j=1}^{n}\cos(2\pi m\,\beta_{j})\right]\right| < \frac{\varepsilon}{4}.$$
 (29)

Similarly

$$\left|\frac{1}{n}\sum_{j=1}^{n}\left[\sum_{m=1}^{M_{1}}b_{m}\sin(2\pi m\,\beta_{j})\right]\right| < \frac{\varepsilon}{4}.$$
(30)

Thus we have, for $n > \max\{N_1, M_1\}, \left|\frac{n([a, b])}{n} - (b - a)\right| < \varepsilon$ and the conclusion follows.

Problem 2. (ERGODICITY) Let $\alpha \in \mathbb{Q}^c$. Let f(x) be continuous on [0,1]. Prove

$$\lim_{n \to \infty} \frac{f(\alpha) + f(2\alpha) + \dots + f(n\alpha)}{n} = \int_0^1 f(x) \, \mathrm{d}x. \tag{31}$$

Show that (31) does not hold if $\alpha \in \mathbb{Q}$. Does (31) still hold if we only assume f(x) to be Riemann integrable on [0, 1]?

^{6.} Multiply (23) by $\cos(2\pi m x)$ (or $\sin(2\pi m x)$) and then integrate.