Math 118 Winter 2015 Lecture 40 (Mar. 25, 2015)

- Arc length of a graph.
- Graph $y=f(x), a \leqslant x \leqslant b$:

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x . \tag{1}
\end{equation*}
$$

- Parametrized curve $(x(t), y(t)), a \leqslant t \leqslant b$:

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t \tag{2}
\end{equation*}
$$

- Parametrized curve in polar coordinates $(r(t), \theta(t)), a \leqslant t \leqslant b$:

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{r^{\prime}(t)^{2}+r(t)^{2} \theta^{\prime}(t)^{2}} \mathrm{~d} t \tag{3}
\end{equation*}
$$

In particular when the curve is given by $r=r(\theta), a \leqslant \theta \leqslant b$,

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{r^{\prime}(\theta)^{2}+r(\theta)^{2}} \mathrm{~d} \theta \tag{4}
\end{equation*}
$$

Example 1. Cycloid. See en.wikipedia.org/wiki/Cycloid, mathworld.wolfram.com/Cycloid.html for background on this curve. The parametrized representation is

$$
\begin{equation*}
x(t)=t-\sin t, y(t)=1-\cos t, \quad 0 \leqslant t \leqslant 2 \pi . \tag{5}
\end{equation*}
$$

Thus we have

$$
\begin{align*}
l & =\int_{0}^{2 \pi} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t \\
& =\sqrt{2} \int_{0}^{2 \pi} \sqrt{1-\cos t} \mathrm{~d} t \\
& =2 \int_{0}^{2 \pi} \sqrt{\sin ^{2} \frac{t}{2}} \mathrm{~d} t \\
& =2 \int_{0}^{2 \pi} \sin \frac{t}{2} \mathrm{~d} t=8 \tag{6}
\end{align*}
$$

Exercise 1. Explain why $\sqrt{\sin ^{2}(t / 2)}=\sin (t / 2)$ in the above calculation.

- Area of plane regions.

Note. Since we do not discuss any measure theory, the discussion of area can only be semirigorous. Rigorous treatment will be done in multi-variable calculus.

- Area between graphs.

The simplest situation is to calculate the area of the region

$$
\begin{equation*}
a \leqslant x \leqslant b, \quad g(x) \leqslant y \leqslant f(x) \tag{7}
\end{equation*}
$$

Clearly the area should be

$$
\begin{equation*}
A=\int_{a}^{b}[f(x)-g(x)] \mathrm{d} x \tag{8}
\end{equation*}
$$

Example 2. Calculate the area of the ellipsis $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$.
Solution. We will treat the upper half as f and the lower half as g. Therefore

$$
\begin{equation*}
f(x)=b \sqrt{1-\frac{x^{2}}{a^{2}}}, \quad g(x)=-b \sqrt{1-\frac{x^{2}}{a^{2}}}, \quad-a \leqslant x \leqslant a, \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
A=2 b \int_{-a}^{a} \sqrt{1-\frac{x^{2}}{a^{2}}} \mathrm{~d} x \tag{10}
\end{equation*}
$$

Exercise 2. Prove that the area is given by $\pi a b$.
Exercise 3. Calculate the area enclosed by $y=e^{x}, y=e^{-x}, x=0, x=1$.

- Area between $x=\psi(y)$ and $x=\varphi(y)$.

The second simplest situation is the area of a region enclosed by $y=c, y=d$, $x=\psi(y), x=\varphi(y)$. Here we assume $c<d, \psi(y) \leqslant \varphi(y)$ for all $y \in[c, d]$. Then we have

$$
\begin{equation*}
A=\int_{c}^{d}[\varphi(y)-\psi(y)] \mathrm{d} y . \tag{11}
\end{equation*}
$$

Example 3. Calculate the area between $y^{2}=-4(x-1)$ and $y^{2}=-2(x-2)$.
Solution. Note that we need to figure out c, d and which is ψ, which is φ. To do this we need some basic understanding of the shape of this region.

We write the two curves as

$$
\begin{equation*}
x-1=-\frac{y^{2}}{4}, \quad x-2=-\frac{y^{2}}{2} . \tag{12}
\end{equation*}
$$

We see that both are parabolas facing (opening to) left, with the second parabola to the right of the first one at the base.

The area is thus given by

$$
\begin{equation*}
\int_{-y_{0}}^{y_{0}}\left[\left(2-\frac{y^{2}}{2}\right)-\left(1-\frac{y^{2}}{4}\right)\right] \mathrm{d} y . \tag{13}
\end{equation*}
$$

Thus all we need is calculating y_{0}. $\left(x_{0}, y_{0}\right)$ satisfy

$$
\begin{equation*}
x_{0}-1=-\frac{y_{0}^{2}}{4}, \quad x_{0}-2=-\frac{y_{0}^{2}}{2} . \tag{14}
\end{equation*}
$$

From this we easily solve $x_{0}=0, y_{0}=2$.

- Area enclosed by a general parametrized curve $(x(t), y(t)), a \leqslant t \leqslant b, x(a)=x(b)$, $y(a)=y(b)$.

Exercise 4. Explain why we need $x(a)=x(b), y(a)=y(b)$.
Here we only consider curves enclosing a convex shape, although the formulas derived will apply to any closed curve.

We assume A is the point corresponding to $t=a, b$ while B is the point corresponding to $t=c \in(a, b)$. We also assume that when t increases from a to $c, x(t)$ is strictly increasing with $(x(t), y(t))$ tracing the lower half of the curve; when t increases from c to $b, x(t)$ is strictly decreasing with $(x(t), y(t))$ tracing the upper half of the curve. In particular, when t increases from a to $b,(x(t), y(t))$ traces the curve counter-clockwisely.

Now if we can find functions $f(x), g(x)$ such that the upper/lower halves are their graphs, the area can be calculated as $\int_{x_{1}}^{x_{2}}[f(x)-g(x)] \mathrm{d} x$.

First consider $f(x)$. As $x(t)$ is strictly decreasing from x_{2} to x_{1} when t is increasing from c to b, there is an inverse function $t=T_{f}(x)$ on $\left[x_{1}, x_{2}\right]$. Thus we have $f(x)=$ $y\left(T_{f}(x)\right)$. Now we calculate

$$
\begin{align*}
\int_{x_{1}}^{x_{2}} f(x) \mathrm{d} x & =\int_{x(b)}^{x(c)} y\left(T_{f}(x)\right) \mathrm{d} x \\
\xlongequal{x=x(t)} & \int_{b}^{c} y(t) x^{\prime}(t) \mathrm{d} t \\
& =\quad-\int_{c}^{b} y(t) x^{\prime}(t) \mathrm{d} t \tag{15}
\end{align*}
$$

Exercise 5. Prove that

$$
\begin{equation*}
\int_{x_{1}}^{x_{2}} g(x) \mathrm{d} x=\int_{a}^{c} y(t) x^{\prime}(t) \mathrm{d} t . \tag{16}
\end{equation*}
$$

Thus we have

$$
\begin{equation*}
A=-\int_{a}^{b} y(t) x^{\prime}(t) \mathrm{d} t \tag{17}
\end{equation*}
$$

Exercise 6. Show that if we parametrize the curve in the opposite (that is, clockwise) direction, we would have $-A=-\int_{a}^{b} y(t) x^{\prime}(t) \mathrm{d} t$.
Exercise 7. Prove that

$$
\begin{equation*}
A=\int_{a}^{b} x(t) y^{\prime}(t) \mathrm{d} t \tag{18}
\end{equation*}
$$

and there also holds

$$
\begin{equation*}
A=\frac{1}{2} \int_{a}^{b}\left[x(t) y^{\prime}(t)-y(t) x^{\prime}(t)\right] \mathrm{d} t \tag{19}
\end{equation*}
$$

Example 4. Calculate the area enclosed by the cycloid and the x-axis.
Solution. We first represent the boundary of the region by one parametrized curve:

$$
\tilde{x}(t)=\left\{\begin{array}{ll}
t-\sin t & 0 \leqslant t \leqslant 2 \pi \tag{20}\\
4 \pi-t & 2 \pi<t \leqslant 4 \pi
\end{array}, \quad \tilde{y}(t)=\left\{\begin{array}{ll}
1-\cos t & 0 \leqslant t \leqslant 2 \pi \\
0 & 2 \pi<t \leqslant 4 \pi
\end{array} .\right.\right.
$$

Now we easily calculate

$$
\begin{equation*}
-\int_{0}^{4 \pi} \tilde{y}(t) \tilde{x}^{\prime}(t) \mathrm{d} t=-\int_{0}^{2 \pi}(1-\cos t)^{2} \mathrm{~d} t=-3 \pi . \tag{21}
\end{equation*}
$$

Note that our parametrization $(\tilde{x}(t), \tilde{y}(t))$ traces the boundary of the region clockwisely, therefore the area is $-(-3 \pi)=3 \pi$.

