Math 118 Winter 2015 Lecture 39 (Mar. 23, 2015)

- Arc length of a graph.

Consider the graph of $y=f(x), a \leqslant x \leqslant b$. We try to establish a formula for the arc length l of this curve.

Let $P: a=x_{0}<x_{1}<\cdots<x_{n}=b$ be an arbitrary partition of $[a, b]$. We connect the points $\left(x_{0}, f\left(x_{0}\right)\right),\left(x_{1}, f\left(x_{1}\right)\right), \ldots,\left(x_{n}, f\left(x_{n}\right)\right)$ be straight line segments. The resulting polygonal curve has length

$$
\begin{equation*}
l(P)=\sum_{k=1}^{n} \sqrt{\left(x_{k}-x_{k-1}\right)^{2}+\left(f\left(x_{k}\right)-f\left(x_{k-1}\right)\right)^{2}} \tag{1}
\end{equation*}
$$

Intuitively, we should accept the following:
i. $l(P) \leqslant l$. (A curve connecting two points is no shorter than the straight line connecting the same two points)
ii. As P gets finer and finer (that is having more and more points), $l(P)$ approaches l. Thus the following definition is reasonable:

Definition 1. The arc length of the graph of $y=f(x), a \leqslant x \leqslant b$ is defined as

$$
\begin{equation*}
l:=\sup _{P} l(P) . \tag{2}
\end{equation*}
$$

Theorem 2. Under the following assumptions on f,
i. f is continuous on $[a, b]$;
ii. f^{\prime} is continuous on (a, b);
iii. $\lim _{x \rightarrow a+} f^{\prime}$ and $\lim _{x \rightarrow b-} f^{\prime}$ exist and are finite.
there holds

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x \tag{3}
\end{equation*}
$$

Exercise 1. Is the continuity of f on $[a, b]$ the consequence of the other two assumptions (on f^{\prime})? Justify your claim.

Proof. Let P be an arbitrary partion of $[a, b]$. Then by MVT we have

$$
\begin{equation*}
l(P)=\sum_{k=1}^{n} \sqrt{1+\left(\frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}\right)^{2}}\left(x_{k}-x_{k-1}\right)=\sum_{k=1}^{n} \sqrt{1+f^{\prime}\left(c_{k}\right)^{2}}\left(x_{k}-x_{k-1}\right) \tag{4}
\end{equation*}
$$

where $c_{k} \in\left(x_{k-1}, x_{k}\right)$. From this it is clear that

$$
\begin{equation*}
L\left(\sqrt{1+f^{\prime}(x)^{2}}, P\right) \leqslant l(P) \leqslant U\left(\sqrt{1+f^{\prime}(x)^{2}}, P\right) \tag{5}
\end{equation*}
$$

Taking supreme on both sides of the first inequality we have

$$
\begin{equation*}
\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x \leqslant l \tag{6}
\end{equation*}
$$

Exercise 2. Prove that $\sqrt{1+f^{\prime}(x)^{2}}$ is Riemann integrable on $[a, b]$.
On the other hand, we observe that

Exercise 3. Let P, Q be partitions of $[a, b]$. Then $l(P \cup Q) \geqslant l(P)$.
From this and the property of Riemann upper sum, together with (5), we have, for arbitrary partitions P, Q,

$$
\begin{equation*}
l(P) \leqslant l(P \cup Q) \leqslant U\left(\sqrt{1+f^{\prime}(x)^{2}}, P \cup Q\right) \leqslant U\left(\sqrt{1+f^{\prime}(x)^{2}}, Q\right) \tag{7}
\end{equation*}
$$

As P, Q are arbitrary, we can take supreme on the left end and infimum on the right end, to conclude

$$
\begin{equation*}
l \leqslant \int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} \mathrm{~d} x \tag{8}
\end{equation*}
$$

Thus the proof ends.

- Arc length of parametrized curves.

More generally, a curve is represented as

$$
\begin{equation*}
(x(t), y(t)), \quad a \leqslant t \leqslant b \tag{9}
\end{equation*}
$$

If we similarly approximate by polygonal curves, we would finally reach
THEOREM 3. Under the following assumptions on x, y,
i. x, y are continuous on $[a, b]$;
ii. x^{\prime}, y^{\prime} are continuous on (a, b);
iii. $\lim _{t \rightarrow a+} x^{\prime}, \lim _{t \rightarrow a+} y^{\prime}, \lim _{t \rightarrow b-} x^{\prime}$ and $\lim _{t \rightarrow b-} y^{\prime}$ exist and are finite,
there holds

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t \tag{10}
\end{equation*}
$$

Exercise 4. Prove Theorem 3.

- Arc length of parametrized curves in polar coordinates.
- Please first review polar coordinates. For example read the wiki page for "Polar coordinate system".
In this case we have $x(t)=r(t) \cos (\theta(t))$ and $y(t)=r(t) \sin (\theta(t))$ which leads to
THEOREM 4. Under the following assumptions on r, θ,
i. r, θ are continuous on $[a, b]$;
ii. $r^{\prime}, \theta^{\prime}$ are continuous on (a, b);
iii. $\lim _{t \rightarrow a+} r^{\prime}, \lim _{t \rightarrow a+} \theta^{\prime}, \lim _{t \rightarrow b-} r^{\prime}$ and $\lim _{t \rightarrow b-} \theta^{\prime}$ exist and are finite,
there holds

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{r^{\prime}(t)^{2}+r(t)^{2} \theta^{\prime}(t)^{2}} \mathrm{~d} t \tag{11}
\end{equation*}
$$

In particular, when the curve is given by $r=r(\theta), a \leqslant \theta \leqslant b$, the arc length is given by

$$
\begin{equation*}
l=\int_{a}^{b} \sqrt{r^{\prime}(\theta)^{2}+r(\theta)^{2}} \mathrm{~d} \theta \tag{12}
\end{equation*}
$$

Exercise 5. Prove Theorem 4.

- Examples.

Example 5. Calculate the circumference of the unit circle $x^{2}+y^{2}=1$.
Solution.

- Method 1. We calculate the curve length l of the graph $y=\sqrt{1-x^{2}},-1 \leqslant x \leqslant 1$. Then the circumference is $2 l$.

$$
\begin{align*}
& l=\int_{-1}^{1} \sqrt{1+\left[\left(\sqrt{1-x^{2}}\right)^{\prime}\right]^{2}} \mathrm{~d} x \\
&=\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x \\
& \xlongequal{x=\sin t} \int_{-\pi / 2}^{\pi / 2} \mathrm{~d} t=\pi \tag{13}
\end{align*}
$$

So the circumference is 2π.
Exercise 6. Note that $f(x)=\sqrt{1-x^{2}}$ does not fully satisfy the hypotheses in Theorem 2. Explain why the above calculate is still reasonable and should give the correct answer.

- Method 2. We parametrize $x(t)=\cos t, y(t)=\sin t, 0 \leqslant t<2 \pi$. Then

$$
\begin{equation*}
l=\int_{0}^{2 \pi} \sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}} \mathrm{~d} t=2 \pi \tag{14}
\end{equation*}
$$

Exercise 7. Calculate the arc length of $x=\cos ^{3} t, y=\sin ^{3} t, t \in[0,2 \pi)$.
Exercise 8. Calculate the arc length of the space curve

$$
\begin{equation*}
x=\cos t, y=\sin t, z=t \text {. } \tag{15}
\end{equation*}
$$

Example 6. Calculate the arc length of $r=1+\cos \theta, 0 \leqslant \theta<2 \pi$.
Solution. We calculate

$$
\begin{aligned}
l & =\int_{0}^{2 \pi} \sqrt{r^{\prime}(\theta)^{2}+r(\theta)^{2}} \mathrm{~d} \theta \\
& =\int_{0}^{2 \pi} \sqrt{2} \sqrt{1+\cos \theta} \mathrm{d} \theta \\
& =2 \int_{0}^{2 \pi} \sqrt{\cos ^{2} \frac{\theta}{2}} \mathrm{~d} \theta \\
& =2\left[\int_{0}^{\pi} \cos \frac{\theta}{2} \mathrm{~d} \theta-\int_{\pi}^{2 \pi} \cos \frac{\theta}{2} \mathrm{~d} \theta\right] \\
& =8 .
\end{aligned}
$$

