MATH 118 WINTER 2015 HOMEWORK 8 SOLUTIONS

DUE THURSDAY MAR. 26 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Solve the following optimization problems (min/max means you need to solve both the minimization and maximization problems)

- a) $\min/\max f(x) = \frac{x^3}{3} 2x^2 + 3x + 1$ subject to $-1 \le x \le 5$;
- b) $\min/\max f(x) = -3x^4 + 6x^2 1$ subject to $-2 \le x \le 2$.

Solution.

- a) $x_{\max} = 5, x_{\min} = -1;$
- b) $x_{\max} = \pm 1, x_{\min} = \pm 2.$

QUESTION 2. (5 PTS) Prove: Among all rectangles inside a fixed circle, the inscribed square has the maximum area and perimeter.

Proof. It is clear that we can consider only inscribed rectangles. Wlog assume the radius of the circle is 1.

• Area.

Let the sides of the rectangle by a, b, then we are solving

$$\max a b \qquad \text{subject to } a^2 + b^2 = 4, \ a \ge 0, \ b \ge 0.$$
(1)

As the constraint is equivalent to $b = \sqrt{4 - a^2}$, $0 \le a \le 2$ the problem is equivalent to

$$\max f(a) := a \sqrt{4 - a^2} \qquad \text{subject to } 0 \leqslant a \leqslant 2.$$
(2)

We calculate

$$f'(a) = \frac{4 - 2a^2}{\sqrt{4 - a^2}} \tag{3}$$

so $f'(a) = 0 \Longrightarrow a_0 = \sqrt{2} \in [0, 2]$. We compare

$$f(0) = 0, \qquad f(2) = 0, \qquad f(\sqrt{2}) = 2.$$
 (4)

Therefore the global maximum is reached at $a = b = \sqrt{2}$ which is the inscribed square.

• Perimeter. Similarly we solve

$$\max f(a) := a + \sqrt{4 - a^2} \qquad \text{subject to } 0 \le a \le 2.$$
(5)

This time we have

$$f'(a) = 1 - \frac{a}{\sqrt{4 - a^2}}.$$
(6)

Solving f'(a) = 0 gives $a_0 = \sqrt{2}$. We compare

$$f(0) = 2,$$
 $f(2) = 2,$ $f(\sqrt{2}) = 2\sqrt{2}.$ (7)

Thus $a = \sqrt{2}$ is the global maximizer and the conclusion follows.

QUESTION 3. (5 PTS) Let f(x) be infinitely differentiable on \mathbb{R} . Consider

$$\min f(x) \qquad subject \ to \ -\infty < x < \infty. \tag{8}$$

- a) (2 PTS) Assume f'(0) = f''(0) = f''(0) = 0 and $f^{(4)}(0) > 0$. What can we conclude about 0? A) local minimizer; B) local maximizer; C) neither; D) cannot decide.
- b) (3 PTS) Assume f'(0) = f''(0) = 0 and f'''(0) < 0. What can we conclude about 0? A) local minimizer; B) local maximizer; C) neither; D) cannot decide.

Justify your answers (using only results from our lecture notes).

Solution.

a) 0 is a local minimizer. As $\lim_{x\to 0} \frac{f''(x) - f'''(0)}{x - 0} = f^{(4)}(0) > 0$ there is $\delta > 0$ such that

$$x \in (-\delta, \delta) - \{0\} \Longrightarrow \frac{f'''(x)}{x} > 0 \tag{9}$$

which gives

$$f'''(x) < 0 \text{ for } x \in (-\delta, 0); \qquad f'''(x) > 0 \text{ for } x \in (0, \delta).$$
 (10)

Now let $x \in (-\delta, 0)$ be arbitrary. By Taylor's theorem we have

$$f(x) = f(0) + f'(0)x + \frac{f''(0)}{2}x^2 + \frac{f'''(c)}{6}x^3 = f(0) + \frac{f'''(c)}{6}x^3$$
(11)

for some $c \in (x,0) \subset (-\delta,0)$. Therefore f'''(c) < 0 and $\frac{f'''(c)}{6}x^3 > 0$. Thus we have f(x) > f(0) for $x \in (-\delta,0)$. Similarly we prove f(x) > f(0) for $x \in (0,\delta)$.

b) 0 is neither. We prove that it is not a local minimizer. The proof for it being not a local maximizer is almost identical.

Let $\delta > 0$ be arbitrary. As $\lim_{x \to 0} \frac{f''(x) - f''(0)}{x - 0} = f'''(0) < 0$ there is $\delta_1 > 0$ such that

$$\forall x \in (-\delta_1, \delta_1) - \{0\}, \qquad \frac{f''(x)}{x} < 0$$
 (12)

which gives

$$f''(x) > 0 \text{ for } x \in (-\delta_1, 0); \qquad f''(x) < 0 \text{ for } x \in (0, \delta_1).$$
 (13)

Now take $x_1 \in (0, \delta_1) \cap (0, \delta)$. By Taylor's theorem we have

$$f(x_1) = f(0) + f'(0) x_1 + \frac{f''(c)}{2} x_1^2 = f(0) + \frac{f''(c)}{2} x_1^2$$
(14)

for some $c \in (0, x_1) \subset (0, \delta)$. As $c \in (0, x_1) \subset (0, \delta_1)$, $f''(c) < 0 \Longrightarrow f(x_1) < f(0)$. Therefore 0 is not a local minimizer.

QUESTION 4. (5 PTS) Let f(x) be continuous, strictly increasing on [0, a] for some a > 0 with f(0) = 0. Let g(x) be its inverse function. Prove the following inequality:

$$\forall x \in [0, a], y \in [0, f(a)], \qquad x \, y \leq \int_0^x f(t) \, \mathrm{d}t + \int_0^y g(u) \, \mathrm{d}u. \tag{15}$$

(Hint: Consider max $F(x) := x y - \int_0^x f(t) dt.$)

Proof. Let $y \in [0, f(a)]$ be fixed and set $F(x) := x y - \int_0^x f(t) dt$.

Solving F'(x) = 0 we have $x_0 = g(y)$. As F'(x) = y - f(x) and f(x) is strictly increasing, F'(x) > 0 when $x < x_0$ and F'(x) < 0 when $x > x_0$. Consequently

$$\forall x \in [0, a], \qquad F(x) \leq F(x_0) = y g(y) - \int_0^{g(y)} f(t) dt.$$
 (16)

Now we calculate $F(x_0)$. Making the change of variable t = g(u) and then integrate by parts we have

$$F(x_0) = y g(y) - \int_0^{g(y)} f(t) dt$$

= $y g(y) - \int_0^y f(g(u)) g'(u) di$
= $y g(y) - \int_0^y u dg(u)$
= $y g(y) - y g(y) + \int_0^y g(u) du = \int_0^y g(u) du$ (17)
of.

Thus ends the proof.