Math 118 Winter 2015 Homework 8 Solutions

Due Thursday Mar. 26 3pm in Assignment Box

Question 1. (5 PTS) Solve the following optimization problems (min/max means you need to solve both the minimization and maximization problems)
a) $\min / \max f(x)=\frac{x^{3}}{3}-2 x^{2}+3 x+1$ subject to $-1 \leqslant x \leqslant 5$;
b) $\min / \max f(x)=-3 x^{4}+6 x^{2}-1$ subject to $-2 \leqslant x \leqslant 2$.

Solution.

a) $x_{\text {max }}=5, x_{\text {min }}=-1$;
b) $x_{\text {max }}= \pm 1, x_{\text {min }}= \pm 2$.

Question 2. (5 PTS) Prove: Among all rectangles inside a fixed circle, the inscribed square has the maximum area and perimeter.

Proof. It is clear that we can consider only inscribed rectangles. Wlog assume the radius of the circle is 1 .

- Area.

Let the sides of the rectangle by a, b, then we are solving

$$
\begin{equation*}
\max a b \quad \text { subject to } a^{2}+b^{2}=4, a \geqslant 0, b \geqslant 0 . \tag{1}
\end{equation*}
$$

As the constraint is equivalent to $b=\sqrt{4-a^{2}}, 0 \leqslant a \leqslant 2$ the problem is equivalent to

$$
\begin{equation*}
\max f(a):=a \sqrt{4-a^{2}} \quad \text { subject to } 0 \leqslant a \leqslant 2 \tag{2}
\end{equation*}
$$

We calculate

$$
\begin{equation*}
f^{\prime}(a)=\frac{4-2 a^{2}}{\sqrt{4-a^{2}}} \tag{3}
\end{equation*}
$$

so $f^{\prime}(a)=0 \Longrightarrow a_{0}=\sqrt{2} \in[0,2]$. We compare

$$
\begin{equation*}
f(0)=0, \quad f(2)=0, \quad f(\sqrt{2})=2 . \tag{4}
\end{equation*}
$$

Therefore the global maximum is reached at $a=b=\sqrt{2}$ which is the inscribed square.

- Perimeter. Similarly we solve

$$
\begin{equation*}
\max f(a):=a+\sqrt{4-a^{2}} \quad \text { subject to } 0 \leqslant a \leqslant 2 . \tag{5}
\end{equation*}
$$

This time we have

$$
\begin{equation*}
f^{\prime}(a)=1-\frac{a}{\sqrt{4-a^{2}}} . \tag{6}
\end{equation*}
$$

Solving $f^{\prime}(a)=0$ gives $a_{0}=\sqrt{2}$. We compare

$$
\begin{equation*}
f(0)=2, \quad f(2)=2, \quad f(\sqrt{2})=2 \sqrt{2} . \tag{7}
\end{equation*}
$$

Thus $a=\sqrt{2}$ is the global maximizer and the conclusion follows.

Question 3. (5 PTs) Let $f(x)$ be infinitely differentiable on \mathbb{R}. Consider

$$
\begin{equation*}
\min f(x) \quad \text { subject to }-\infty<x<\infty . \tag{8}
\end{equation*}
$$

a) (2 PTS) Assume $f^{\prime}(0)=f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=0$ and $f^{(4)}(0)>0$. What can we conclude about 0 ? A) local minimizer; B) local maximizer; C) neither; D) cannot decide.
b) (3 PTS) Assume $f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{\prime \prime \prime}(0)<0$. What can we conclude about 0 ?
A) local minimizer; B) local maximizer; C) neither; D) cannot decide.

Justify your answers (using only results from our lecture notes).

Solution.

a) 0 is a local minimizer. As $\lim _{x \rightarrow 0} \frac{f^{\prime \prime \prime}(x)-f^{\prime \prime \prime}(0)}{x-0}=f^{(4)}(0)>0$ there is $\delta>0$ such that

$$
\begin{equation*}
x \in(-\delta, \delta)-\{0\} \Longrightarrow \frac{f^{\prime \prime \prime}(x)}{x}>0 \tag{9}
\end{equation*}
$$

which gives

$$
\begin{equation*}
f^{\prime \prime \prime}(x)<0 \text { for } x \in(-\delta, 0) ; \quad f^{\prime \prime \prime}(x)>0 \text { for } x \in(0, \delta) . \tag{10}
\end{equation*}
$$

Now let $x \in(-\delta, 0)$ be arbitrary. By Taylor's theorem we have

$$
\begin{equation*}
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2} x^{2}+\frac{f^{\prime \prime \prime}(c)}{6} x^{3}=f(0)+\frac{f^{\prime \prime \prime}(c)}{6} x^{3} \tag{11}
\end{equation*}
$$

for some $c \in(x, 0) \subset(-\delta, 0)$. Therefore $f^{\prime \prime \prime}(c)<0$ and $\frac{f^{\prime \prime \prime}(c)}{6} x^{3}>0$. Thus we have $f(x)>f(0)$ for $x \in(-\delta, 0)$. Similarly we prove $f(x)>f(0)$ for $x \in(0, \delta)$.
b) 0 is neither. We prove that it is not a local minimizer. The proof for it being not a local maximizer is almost identical.

Let $\delta>0$ be arbitrary. As $\lim _{x \rightarrow 0} \frac{f^{\prime \prime}(x)-f^{\prime \prime}(0)}{x-0}=f^{\prime \prime \prime}(0)<0$ there is $\delta_{1}>0$ such that

$$
\begin{equation*}
\forall x \in\left(-\delta_{1}, \delta_{1}\right)-\{0\}, \quad \frac{f^{\prime \prime}(x)}{x}<0 \tag{12}
\end{equation*}
$$

which gives

$$
\begin{equation*}
f^{\prime \prime}(x)>0 \text { for } x \in\left(-\delta_{1}, 0\right) ; \quad f^{\prime \prime}(x)<0 \text { for } x \in\left(0, \delta_{1}\right) . \tag{13}
\end{equation*}
$$

Now take $x_{1} \in\left(0, \delta_{1}\right) \cap(0, \delta)$. By Taylor's theorem we have

$$
\begin{equation*}
f\left(x_{1}\right)=f(0)+f^{\prime}(0) x_{1}+\frac{f^{\prime \prime}(c)}{2} x_{1}^{2}=f(0)+\frac{f^{\prime \prime}(c)}{2} x_{1}^{2} \tag{14}
\end{equation*}
$$

for some $c \in\left(0, x_{1}\right) \subset(0, \delta)$. As $c \in\left(0, x_{1}\right) \subset\left(0, \delta_{1}\right), f^{\prime \prime}(c)<0 \Longrightarrow f\left(x_{1}\right)<f(0)$. Therefore 0 is not a local minimizer.

QUESTION 4. (5 PTs) Let $f(x)$ be continuous, strictly increasing on $[0, a]$ for some $a>0$ with $f(0)=0$. Let $g(x)$ be its inverse function. Prove the following inequality:

$$
\begin{equation*}
\forall x \in[0, a], y \in[0, f(a)], \quad x y \leqslant \int_{0}^{x} f(t) \mathrm{d} t+\int_{0}^{y} g(u) \mathrm{d} u . \tag{15}
\end{equation*}
$$

(Hint: Consider $\max F(x):=x y-\int_{0}^{x} f(t) \mathrm{d} t$.)
Proof. Let $y \in[0, f(a)]$ be fixed and set $F(x):=x y-\int_{0}^{x} f(t) \mathrm{d} t$.

Solving $F^{\prime}(x)=0$ we have $x_{0}=g(y)$. As $F^{\prime}(x)=y-f(x)$ and $f(x)$ is strictly increasing, $F^{\prime}(x)>0$ when $x<x_{0}$ and $F^{\prime}(x)<0$ when $x>x_{0}$. Consequently

$$
\begin{equation*}
\forall x \in[0, a], \quad F(x) \leqslant F\left(x_{0}\right)=y g(y)-\int_{0}^{g(y)} f(t) \mathrm{d} t . \tag{16}
\end{equation*}
$$

Now we calculate $F\left(x_{0}\right)$. Making the change of variable $t=g(u)$ and then integrate by parts we have

$$
\begin{align*}
F\left(x_{0}\right) & =y g(y)-\int_{0}^{g(y)} f(t) \mathrm{d} t \\
& =y g(y)-\int_{0}^{y} f(g(u)) g^{\prime}(u) \mathrm{d} i \\
& =y g(y)-\int_{0}^{y} u \mathrm{~d} g(u) \\
& =y g(y)-y g(y)+\int_{0}^{y} g(u) \mathrm{d} u=\int_{0}^{y} g(u) \mathrm{d} u \tag{17}
\end{align*}
$$

Thus ends the proof.

