## Math 118 Winter 2015 Homework 8

## Due Thursday Mar. 26 3pm in Assignment Box

Question 1. (5 pts) Solve the following optimization problems (min/max means you need to solve both the minimization and maximization problems)
a) $\min / \max f(x)=\frac{x^{3}}{3}-2 x^{2}+3 x+1$ subject to $-1 \leqslant x \leqslant 5$;
b) $\min / \max f(x)=-3 x^{4}+6 x^{2}-1$ subject to $-2 \leqslant x \leqslant 2$.

Question 2. (5 pts) Prove: Among all rectangles inside a fixed circle, the inscribed square has the maximum area and the maximum perimeter.

Question 3. (5 pts) Let $f(x)$ be infinitely differentiable on $\mathbb{R}$. Consider

$$
\begin{equation*}
\min f(x) \quad \text { subject to }-\infty<x<\infty . \tag{1}
\end{equation*}
$$

a) (2 PTS) Assume $f^{\prime}(0)=f^{\prime \prime}(0)=f^{\prime \prime \prime}(0)=0$ and $f^{(4)}(0)>0$. What can we conclude about $x=0$ ?
A) local minimizer; B) local maximizer; C) neither; D) not enough information to decide.
b) (3 PTs) Assume $f^{\prime}(0)=f^{\prime \prime}(0)=0$ and $f^{\prime \prime \prime}(0)<0$. What can we conclude about $x=0$ ?
A) local minimizer; B) local maximizer; C) neither; $D$ ) not enough information to decide.

Justify your answers (You should not use results not in our lecture notes).
Question 4. (5 PTs) Let $f(x)$ be continuous, strictly increasing on $[0, a]$ for some $a>0$ with $f(0)=0$. Let $g(x)$ be its inverse function. Prove the following inequality:

$$
\begin{equation*}
\forall x \in[0, a], \quad \forall y \in[0, f(a)], \quad x y \leqslant \int_{0}^{x} f(t) \mathrm{d} t+\int_{0}^{y} g(u) \mathrm{d} u . \tag{2}
\end{equation*}
$$

(Hint: Consider max $F(x):=x y-\int_{0}^{x} f(t) \mathrm{d} t$ subject to $0 \leqslant x \leqslant a$.)

