
Math 118 Winter 2015 Lecture 36 (Mar. 18, 2015)

� Recall

� We will focus on
min f(x) subject to a6x6 b: (1)

Note. You should be able to �translate� everything into the context of max f(x)
subject to a6x6 b.

� Global/local minimizer.

¡ x02 [a; b] is a global minimizer: 8x2 [a; b], f(x)> f(x0);

¡ x02 [a; b] is a local minimizer: 9�>0, 8x2 [a; b]\ (x0¡ �; x0+ �), f(x)> f(x0);
¡ x02 [a; b] is an interior local minimizer:

i. x0 is a local minimizer;

ii. x02 (a; b).
Exercise 1. Prove that 0 is not a local minimizer of min x3 subject to x2R. (Sol:1 )

� Necessary condition for x0 to be a local minimizer.

Theorem. Let x0 be an interior local minimizer. Assume f is di�erentiable on (a; b).
Then f 0(x0)= 0.

Exercise 2. Prove: f 0(x0)= 0 if x0 is an interior local maximizer.

Exercise 3. Find a f(x) such that f 0(x0) = 0 for some x0 but x0 is neither a local minimizer
nor a local maximizer.

Example 1. Solve minx ln2x subject to 06x<1.

Solution. Solving (x ln2x)0=0 we have x1;2=1; e¡1. Compare

f(0)= 0; f(1)= 0; f(e¡1)= e¡1; f(1)=1 (2)

we see that the global minimum is 0 with two global minimizers 0; 1.

� Which solutions to f 0(x)= 0 are local minimizers?

� Note that when f 0(x0) = 0, there are three cases: x0 is a local minimizer, a local
maximizer, or neither.

� First order conditions.

Theorem 2. Let f be di�erentiable on (a; b). Let f 0(x0)= 0. Then:

¡ If there is � > 0 such that f 0(x) 6 0 for x 2 (x0 ¡ �; x0) and f 0(x) > 0 for
x2 (x0; x0+ �), then x0 is a local minimizer;

¡ If there is � > 0 such that f 0(x) > 0 for x 2 (x0 ¡ �; x0) and f 0(x) 6 0 for
x2 (x0; x0+ �), then x0 is a local maximizer;

Proof. We prove that �rst claim and leave the second one as exercise. Let x2 (x0¡�;
x0+ �) be arbitrary, we will prove f(x)> f(x0). There are three cases:

1. x=x0. We have f(x)= f(x0);

1. Let � > 0 be arbitrary. Set x=¡�

2
. We have f(x)=¡

�
�

2

�
3
< 0= f(0).



2. x2 (x0¡ �; x0). By MVT we have

f(x)¡ f(x0)
x¡x0

= f 0(c) (3)

for some c2 (x; x0)� (x0¡ �; x0). By assumption f 0(c)6 0. As x¡x0< 0 this
implies f(x)¡ f(x0)> 0=) f(x)> f(x0).

3. x2 (x0; x0+ �). The proof is almost identical to that of the previous case. �

Exercise 4. Let f be di�erentiable on (a; b). Let f 0(x0)=0. Further assume that there is � > 0
such that f 0(x)> 0 for x2 (x0¡ �; x0). Prove that x0 is not a local minimizer.

Exercise 5. Let f be di�erentiable on (a; b). Assume that there is � >0 such that f 0(x)6 0 for
x2 (x0¡ �; x0) and f 0(x)> 0 for x2 (x0; x0+ �). Prove f 0(x0)= 0.

Remark 3. Note that these conditions are not necessary. For example, x = 0 is a
local minimizer to

min f(x)=x2
�
1+ sin

1
x

�
; x2R (4)

but for every � > 0 there is x2 (¡�; 0) such that f 0(x)> 0.

Example 4. We return to Example 1. We have f 0(x)= lnx (lnx+1). Thus

¡ At x1=1: Take �= 1

2
. We have f 0(x)< 0 when x2

�
1

2
; 1

�
and f 0(x)> 0 when

x2
�
1; 3

2

�
. Thus 1 is a local minimizer.

¡ At x2= e¡1. Take �= e¡1. We have f 0(x)> 0 when x2 (0; e¡1) and f 0(x)< 0
when x2 (e¡1; 2 e¡1). Thus e¡1 is a local maximizer.

� Second order conditions.

Theorem 5. Let f be di�erentiable on (a; b). Let f 0(x0) = 0. Further assume that
f 00(x0) exists. Then:

¡ f 00(x0)> 0=)x0 is a local minimizer =)f 00(x0)> 0.
¡ f 00(x0)< 0=)x0 is a local maximizer =)f 00(x0)6 0.

Proof. Assume f 00(x0)> 0. By de�nition this implies

lim
x!x0

f 0(x)¡ f 0(x0)
x¡x0

> 0 (5)

which implies there is �>0 such that for all x2 (x0¡�;x0+�)¡fx0g, f
0(x)¡ f 0(x0)

x¡x0
>0.

As f 0(x0) = 0, we conclude that f 0(x) < 0 for x 2 (x0 ¡ �; x0) and f 0(x) > 0 for
x2 (x0; x0+ �). Now the conclusion follows from Theorem 2. �

Exercise 6. Prove f 00(x0)< 0=)x0 is a local maximizer.

Exercise 7. Prove that f 00(x0)> 0=)9� > 0;8x2 (x0¡ �; x0+ �)¡fx0g; f(x)> f(x0). Then
use this to prove x0 is a local maximizer =)f 00(x0)6 0.

Example 6. We return to Example 1. We have f 00(x)= 2 lnx+1

x
. Thus

¡ At x1=1: f 00(1)= 1> 0. Thus 1 is a local minimizer.

¡ At x2= e¡1. f 00(e¡1)=¡e< 0. Thus e¡1 is a local maximizer.



� Examples.

Example 7. (Wireless communication) Consider a user between two cell phone towers
of height h with distance d part. Each tower broadcasts with power P . The user would like
to receive the signal from tower 1 but not 2. Thus we would like to maximize the signal-to-
noise ratio (SNR):

SNR= P /d12

P /d22
= d2

2

d1
2
= (d¡x)2+h2

x2+h2
subject to 06x6 d: (6)

1 2

x

d1 d2

Taking derivative we see that we should solve

¡2 (d¡x) (x2+h2)¡ 2x[(d¡x)2+h2] = 0 (7)

which gives x1;2=
d� d2+4h2

p
2

. Both are out of [0; d]. So we only need to check the end points
0; d and conclude that x should be 0.

Remark 8. This is quite silly. To make it (arguably) less silly we drop the constraint

06x6 d. This time we see that x2 :=
d¡ d2+4h2

p
2

is the global maximizer.
Exercise 8. Prove the above statement.

Example 9. (Carrying a pole in a hallway) We consider the following problem. We
try to bring a long pole through the corner of the following hallway. What is the maximum
length of the pole that allows us to do so?

3m

3m
�



It is easy to see that the optimization problem reads

min l(�)= 3
cos �

+ 3
sin �

; subject to 06 �6 �
2
: (8)

We calculate

l 0(�)= 3 sin �
cos2�

¡ 3 cos�
sin2�

= 3
cos2� sin2�

[sin3�¡ cos3�]: (9)

As

sin3�¡ cos3�= [sin �¡ cos �] [sin2�+ sin� cos�+ cos2�]= [sin �¡ cos �]
�
1+ 1

2
sin(2 �)

�
(10)

the only solution to l 0(�)=0 is �= �

4
. Thus the maximum length of the pole is 6 2

p
meters.

Exercise 9. Try to study more complicated situations, for example the hallway could be 3D.
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