MATH 118 WINTER 2015 MIDTERM 2 REVIEW

- Midterm 1 coverage:
 - \circ $\;$ Lectures 20 31 and the exercises therein.
 - \circ Homeworks 5 7.
 - The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like these exercises/problems.

1. Exercises.

Exercise 1. Prove/disprove by definition the convergence of the following improper integrals.

$$\int_{-\infty}^{\infty} \frac{\mathrm{d}x}{1+x^2}; \qquad \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{1-x}}; \qquad \int_{0}^{1} \frac{\mathrm{d}x}{(x^2-1)^2}; \tag{1}$$

Exercise 2. Prove/disprove the convergence of the following improper integrals.

$$\int_{1}^{\infty} \frac{\mathrm{d}x}{x^{2}(1+e^{x})}; \qquad \int_{1}^{\infty} \frac{\sin x}{x^{3}} \,\mathrm{d}x; \qquad \int_{0}^{1} \frac{\mathrm{d}x}{\sqrt{x}+x^{3}}; \tag{2}$$

Exercise 3. Let f(x), g(x) be improperly integrable on $(0, \infty)$. Prove by definition: If $f(x) \leq g(x)$ for all $x \in (0, \infty)$, then $\int_0^\infty f(x) dx \leq \int_0^\infty g(x) dx$.

Exercise 4. Calculate the following limits of functions for $x \in \mathbb{R}$. Then determine whether the convergence is uniform or not. Justify.

$$\lim_{n \to \infty} n \, x^2 \, e^{-n^2 x}; \qquad \lim_{n \to \infty} \frac{\sin(\sqrt{n} \, x)}{\ln n}; \qquad \lim_{n \to \infty} \frac{1 - \cos\left(\frac{x}{n}\right)}{1 + (\sin x)^2}. \tag{3}$$

Exercise 5. For each of the following series, find all $x \in \mathbb{R}$ such that the series converges. Then discuss the continuity of the functions defined by these series.

$$\sum_{n=1}^{\infty} \frac{n-1}{n+1} \left(\frac{x}{3x+1}\right)^n; \qquad \sum_{n=1}^{\infty} n e^{-nx}; \qquad \sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$$
(4)

Exercise 6. Find bounded functions $f_n(x): \mathbb{R} \mapsto \mathbb{R}$ such that

$$\lim_{x \to \infty} f_n(x) = f(x) \tag{5}$$

for every $x \in \mathbb{R}$ but f(x) is not bounded.

2. More exercises.

Exercise 7. Prove/disprove the convergence of $\int_0^\infty \frac{\sin x}{x^2} dx$ and $\int_0^\infty \frac{dx}{x^2(1+e^x)}$. **Exercise 8.** Let f(x) be such that $\lim_{d \to +\infty} \int_{-d}^d f(x) dx$ exists and is finite. Does it follow that f(x) is improperly integrable on $(-\infty, \infty)$? Justify your claim.

Exercise 9. Prove or disprove: If f(x) is improperly integrable on $(0, \infty)$, then $\lim_{x\to\infty} f(x) = 0$.

Exercise 10. Find all
$$p \in \mathbb{R}$$
 such that $\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^p}$ converges. Justify

Exercise 11. Find all $x \in \mathbb{R}$ such that $\sum_{n=1}^{\infty} \frac{(n+x)^n}{n^{n+x}}$ is convergent and study the continuity of the function defined by this series.

Exercise 12. Prove:

a)
$$\sum_{n=1}^{\infty} (-1)^n x^n (1-x)$$
 converges uniformly on $[0,1];$

b) $\sum_{n=1}^{\infty} |(-1)^n x^n (1-x)|$ converges on [0, 1] but the convergence is not uniform.

Exercise 13. Let $f_n(x) = x \arctan(n x)$.

- a) Prove that $\lim_{n\to\infty} f_n(x) = \frac{\pi}{2} |x|;$
- b) Prove that $\lim_{n\to\infty} f'_n(x)$ exists for every x, including x = 0, but the convergence is not uniform in any interval containing 0.

Exercise 14. Let $f_n(x)$ be continuous on [a, b] and assume $f_n \longrightarrow f$ uniformly on (a, b). Prove that $f_n \longrightarrow f$ uniformly on [a, b].

Exercise 15. Find the elementary functions given by

$$\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}; \qquad \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^{2n+1}}{2n+1}; \qquad \sum_{n=1}^{\infty} \frac{x^n}{n(n+1)}.$$
(6)

Justify your calculation.

3. Problems.

Problem 1. Find f(x) that is improperly integrable on (0,1) but |f(x)| is not.

Problem 2. Find f(x), g(x) > 0 such that

- a) f(x) is improperly integrable on $(0,\infty)$ but $f(x)^2$ is not.
- b) $g(x)^2$ is improperly integrable on $(0,\infty)$ but g(x) is not.

Justify.

Problem 3. Let $S_0(x) = 1$ and define successively

$$S_n(x) = \sqrt{x S_{n-1}(x)}.$$
 (7)

Prove that $S_n(x)$ converges uniformly on [0, 1].

Problem 4. Let $f_n(x) = g(x) x^n$ where g(x) is continuous on [0,1] with g(1) = 0. Prove that $f_n(x) \longrightarrow 0$ uniformly on [0,1].

Problem 5. Show that there is no f satisfying both of the following:

- There is a sequence of numbers $\{a_n\}$ such that $f(x) = \sum_{n=0}^{\infty} a_n x^n$ on (-1, 1);
- $f\left(\frac{1}{n}\right) = \frac{\sin n}{n^2}$ for all $n \in \mathbb{N}$.