Math 118 Winter 2015 Midterm 2 Review

- Midterm 1 coverage:
- Lectures 20-31 and the exercises therein.
- Homeworks 5-7.
- The exercises below are to help you on the concepts and techniques. The exam problems may or may not look like these exercises/problems.

1. Exercises.

Exercise 1. Prove/disprove by definition the convergence of the following improper integrals.

$$
\begin{equation*}
\int_{-\infty}^{\infty} \frac{\mathrm{d} x}{1+x^{2}} ; \quad \int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{1-x}} ; \quad \int_{0}^{1} \frac{\mathrm{~d} x}{\left(x^{2}-1\right)^{2}} \tag{1}
\end{equation*}
$$

Exercise 2. Prove/disprove the convergence of the following improper integrals.

$$
\begin{equation*}
\int_{1}^{\infty} \frac{\mathrm{d} x}{x^{2}\left(1+e^{x}\right)} ; \quad \int_{1}^{\infty} \frac{\sin x}{x^{3}} \mathrm{~d} x ; \quad \int_{0}^{1} \frac{\mathrm{~d} x}{\sqrt{x}+x^{3}} \tag{2}
\end{equation*}
$$

Exercise 3. Let $f(x), g(x)$ be improperly integrable on $(0, \infty)$. Prove by definition: If $f(x) \leqslant g(x)$ for all $x \in(0, \infty)$, then $\int_{0}^{\infty} f(x) \mathrm{d} x \leqslant \int_{0}^{\infty} g(x) \mathrm{d} x$.
Exercise 4. Calculate the following limits of functions for $x \in \mathbb{R}$. Then determine whether the convergence is uniform or not. Justify.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n x^{2} e^{-n^{2} x} ; \quad \lim _{n \rightarrow \infty} \frac{\sin (\sqrt{n} x)}{\ln n} ; \quad \lim _{n \rightarrow \infty} \frac{1-\cos \left(\frac{x}{n}\right)}{1+(\sin x)^{2}} \tag{3}
\end{equation*}
$$

Exercise 5. For each of the following series, find all $x \in \mathbb{R}$ such that the series converges. Then discuss the continuity of the functions defined by these series.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{n-1}{n+1}\left(\frac{x}{3 x+1}\right)^{n} ; \quad \sum_{n=1}^{\infty} n e^{-n x} ; \quad \sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{2 n}} \tag{4}
\end{equation*}
$$

Exercise 6. Find bounded functions $f_{n}(x): \mathbb{R} \mapsto \mathbb{R}$ such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} f_{n}(x)=f(x) \tag{5}
\end{equation*}
$$

for every $x \in \mathbb{R}$ but $f(x)$ is not bounded.

2. More exercises.

Exercise 7. Prove/disprove the convergence of $\int_{0}^{\infty} \frac{\sin x}{x^{2}} \mathrm{~d} x$ and $\int_{0}^{\infty} \frac{\mathrm{d} x}{x^{2}\left(1+e^{x}\right)}$.
Exercise 8. Let $f(x)$ be such that $\lim _{d \xrightarrow{\longrightarrow}} \int_{-d}^{d} f(x) \mathrm{d} x$ exists and is finite. Does it follow that $f(x)$ is improperly integrable on $(-\infty, \infty)$? Justify your claim.
Exercise 9. Prove or disprove: If $f(x)$ is improperly integrable on $(0, \infty)$, then $\lim _{x \rightarrow \infty} f(x)=0$.
Exercise 10. Find all $p \in \mathbb{R}$ such that $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}$ converges. Justify.
Exercise 11. Find all $x \in \mathbb{R}$ such that $\sum_{n=1}^{\infty} \frac{(n+x)^{n}}{n^{n+x}}$ is convergent and study the continuity of the function defined by this series.
Exercise 12. Prove:
a) $\sum_{n=1}^{\infty}(-1)^{n} x^{n}(1-x)$ converges uniformly on $[0,1]$;
b) $\sum_{n=1}^{\infty}\left|(-1)^{n} x^{n}(1-x)\right|$ converges on $[0,1]$ but the convergence is not uniform.

Exercise 13. Let $f_{n}(x)=x \arctan (n x)$.
a) Prove that $\lim _{n \rightarrow \infty} f_{n}(x)=\frac{\pi}{2}|x|$;
b) Prove that $\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ exists for every x, including $x=0$, but the convergence is not uniform in any interval containing 0 .

Exercise 14. Let $f_{n}(x)$ be continuous on $[a, b]$ and assume $f_{n} \longrightarrow f$ uniformly on (a, b). Prove that $f_{n} \longrightarrow f$ uniformly on $[a, b]$.

Exercise 15. Find the elementary functions given by

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{2 n+1} ; \quad \sum_{n=0}^{\infty}(-1)^{n-1} \frac{x^{2 n+1}}{2 n+1} ; \quad \sum_{n=1}^{\infty} \frac{x^{n}}{n(n+1)} . \tag{6}
\end{equation*}
$$

Justify your calculation.

3. Problems.

Problem 1. Find $f(x)$ that is improperly integrable on $(0,1)$ but $|f(x)|$ is not.
Problem 2. Find $f(x), g(x)>0$ such that
a) $f(x)$ is improperly integrable on $(0, \infty)$ but $f(x)^{2}$ is not.
b) $g(x)^{2}$ is improperly integrable on $(0, \infty)$ but $g(x)$ is not.

Justify.
Problem 3. Let $S_{0}(x)=1$ and define successively

$$
\begin{equation*}
S_{n}(x)=\sqrt{x S_{n-1}(x)} . \tag{7}
\end{equation*}
$$

Prove that $S_{n}(x)$ converges uniformly on $[0,1]$.
Problem 4. Let $f_{n}(x)=g(x) x^{n}$ where $g(x)$ is continuous on $[0,1]$ with $g(1)=0$. Prove that $f_{n}(x) \longrightarrow 0$ uniformly on $[0,1]$.

Problem 5. Show that there is no f satisfying both of the following:

- There is a sequence of numbers $\left\{a_{n}\right\}$ such that $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ on $(-1,1)$;
- $\quad f\left(\frac{1}{n}\right)=\frac{\sin n}{n^{2}}$ for all $n \in \mathbb{N}$.

