MATH 118 WINTER 2015 LECTURE 34 (MAR. 12, 2015)

Midterm 2 Review III

- Checking uniform convergence for infinite series of functions.
 - Check that $S_n(x) := \sum_{k=1}^n u_k(x)$ (as a sequence) converges uniformly on [a, b];
 - \circ Weierstrass's M-test.

If $|u_n(x)| \leq a_n$ on [a, b] and $\sum_{n=1}^{\infty} a_n$ converges, then $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b].

Exercise 1. $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b] if $\sum_{n=1}^{\infty} \sup_{[a, b]} |u_n(x)|$ converges. **Exercise 2.** Find a uniformly convergent $\sum_{n=1}^{\infty} u_n(x)$ such that Weierstrass's M-test fails.

A necessary condition. If $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b], then $u_n(x) \longrightarrow 0$ uniformly on [a, b].

Example 1. Study the convergence of $\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$ on $(0,\infty)$.

Solution.

• Convergence. Three cases.

 $- \quad x \in (0,1). \text{ In this case we have } \left| \frac{x^n}{1+x^{2n}} \right| \leqslant x^n \text{ and convergence follows.}$

- x=1. In this case $\frac{x^n}{1+x^{2n}}=\frac{1}{2}$ and $\sum_{n=1}^{\infty}\frac{x^n}{1+x^{2n}}$ diverges.

$$-x > 1$$
. In this case we have $\left|\frac{x^n}{1+x^{2n}}\right| < \left(\frac{1}{x}\right)^n$. As $\left|\frac{1}{x}\right| < 1$ convergence follows.

- Uniform convergence.
 - Convergence is not uniform on (0, 1). We calculate $\sup_{x \in (0,1)} \left| \frac{x^n}{1+x^{2n}} \right| \ge \lim_{x \to 1^-} \frac{x^n}{1+x^{2n}} = \frac{1}{2}$. Therefore $\frac{x^n}{1+x^{2n}}$ does not converge to 0 uniformly on (0,1) and the convergence of $\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$ on (0,1) is thus not uniform.
 - Convergence is not uniform on $(1, \infty)$. The proof is similar to the (0, 1) case.

Exercise 3. Let 0 < a < 1. Prove that $\sum_{n=1}^{\infty} \frac{x^n}{1+x^{2n}}$ converges uniformly on (0, a).

- Properties of uniformly convergent sequence/series of functions.
 - Continuity.
 - Let $f(x) := \lim_{n \to \infty} f_n(x)$ (or $\sum_{n=1}^{\infty} u_n(x)$) on [a, b]. If
 - i. each $f_n(x)$ $(u_n(x))$ is continuous on [a, b], and
 - ii. the convergence is uniform on [a, b],

then f(x) is continuous on [a, b].

• Integrability.

Let $f(x) := \lim_{n \to \infty} f_n(x)$ (or $\sum_{n=1}^{\infty} u_n(x)$) on [a, b]. If

- i. each $f_n(x)$ $(u_n(x))$ is Riemann integrable on [a, b], and
- ii. the convergence is uniform on [a, b],

then f(x) is Riemann integrable on [a, b].

• Differentiability.

Let $f(x) := \lim_{n \to \infty} f_n(x)$ (or $\sum_{n=1}^{\infty} u_n(x)$) and $\varphi(x) := \lim_{n \to \infty} f'_n(x)$ $(\sum_{n=1}^{\infty} u'_n(x))$ on [a, b]. If – both convergences to f and φ are uniform on [a, b],

then $f'(x) = \varphi(x)$ on [a, b].

Example 2. Study $f(x) := \sum_{n=1}^{\infty} 2^n \sin\left(\frac{1}{3^n x}\right)$ on $(0, \infty)$.

Solution.

• Domain.

We have $\left|2^n \sin\left(\frac{1}{3^n x}\right)\right| \leq \frac{2^n}{3^n x} = \frac{1}{x} \left(\frac{2}{3}\right)^n$ therefore f(x) is defined for all $x \in (0, \infty)$.

• Uniform convergence.

We have $M_n := \sup_{(0,\infty)} \left| 2^n \sin\left(\frac{1}{3^n x}\right) \right| \ge 2^n \sin\left(\frac{1}{3^n 3^{-n}}\right) = 2^n \sin 1$. Thus $2^n \sin\left(\frac{1}{3^n x}\right)$ does not converge to 0 uniformly on $(0, \infty)$ and therefore $\sum_{n=1}^{\infty} 2^n \sin\left(\frac{1}{3^n x}\right)$ does not converge uniformly on $(0,\infty)$.

• From $\left|2^n \sin\left(\frac{1}{3^n x}\right)\right| \leq \frac{1}{x} \left(\frac{2}{3}\right)^n$ it is clear that the convergence is uniform on (a, ∞) for every a > 0 and consequently f(x) is continuous on $(0, \infty)$.

Exercise 4. Prove that f(x) is differentiable on $(0, \infty)$.

Problem 1. Is f(x) infinitely differentiable or improperly integrable on $(0, \infty)$? Justify.

Problem 2. Is $f(x) := \sum_{n=1}^{\infty} \frac{\sin(n^2 x)}{2^n}$ improperly integrable on $(0, \infty)$? Justify.

Example 3. Prove or disprove: Let $f(x) := \lim_{n \to \infty} f_n(x)$ (or $\sum_{n=1}^{\infty} u_n(x)$) on (a, b). If

- i. each $f_n(x)$ $(u_n(x))$ is improperly integrable on (a, b), and
- ii. the convergence is uniform on (a, b),

then f(x) is improperly integrable on (a, b).

Solution. The claim is false. A counterexample is $f(x) = \frac{1}{x}$ and $f_n(x) = \frac{e^{-x/n}}{x}$ on $(1, \infty)$.

Power series.

Let $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ be a power series with radius of convergence $R := [\limsup_{n \to \infty} |a_n|^{1/n}]^{-1}$. Define $f(x) := \sum_{n=0}^{\infty} a_n (x - x_0)^n$. Then

- a) f(x) is continuous on $(x_0 R, x_0 + R)$.
- b) f(x) is differentiable on $(x_0 R, x_0 + R)$, and $f'(x) = \sum_{n=0}^{\infty} (n+1) a_{n+1} (x x_0)^n$ on $(x_0 R, x_0 + R)$.
- c) f(x) is infinitely differentiable on $(x_0 R, x_0 + R)$, and

$$f^{(m)}(x) = \sum_{n=0}^{\infty} (n+m) \cdots (n+1) a_{n+m} (x-x_0)^n.$$
(1)

d) Let $[a, b] \subset (x_0 - R, x_0 + R)$ be arbitrary. Then f(x) is Riemann integrable on [a, b] and furthermore

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{n=0}^{\infty} a_n \int_{a}^{b} (x - x_0)^n \, \mathrm{d}x.$$
 (2)