Math 118 Winter 2015 Lecture 34 (Mar. 12, 2015)

Midterm 2 Review III

- Checking uniform convergence for infinite series of functions.
- Check that $S_{n}(x):=\sum_{k=1}^{n} u_{k}(x)$ (as a sequence) converges uniformly on $[a, b]$;
- Weierstrass's M-test.

If $\left|u_{n}(x)\right| \leqslant a_{n}$ on $[a, b]$ and $\sum_{n=1}^{\infty} a_{n}$ converges, then $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$.

Exercise 1. $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$ if $\sum_{n=1}^{\infty} \sup _{[a, b]}\left|u_{n}(x)\right|$ converges.
Exercise 2. Find a uniformly convergent $\sum_{n=1}^{\infty} u_{n}(x)$ such that Weierstrass's M-test fails.

- A necessary condition.

If $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$, then $u_{n}(x) \longrightarrow 0$ uniformly on $[a, b]$.
Example 1. Study the convergence of $\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{2 n}}$ on $(0, \infty)$.

Solution.

- Convergence. Three cases.
$-x \in(0,1)$. In this case we have $\left|\frac{x^{n}}{1+x^{2 n}}\right| \leqslant x^{n}$ and convergence follows.
- $\quad x=1$. In this case $\frac{x^{n}}{1+x^{2 n}}=\frac{1}{2}$ and $\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{2 n}}$ diverges.
- $\quad x>1$. In this case we have $\left|\frac{x^{n}}{1+x^{2 n}}\right|<\left(\frac{1}{x}\right)^{n}$. As $\left|\frac{1}{x}\right|<1$ convergence follows.
- Uniform convergence.
- Convergence is not uniform on (0,1). We calculate $\sup _{x \in(0,1)}\left|\frac{x^{n}}{1+x^{2 n}}\right| \geqslant$ $\lim _{x \rightarrow 1-} \frac{x^{n}}{1+x^{2 n}}=\frac{1}{2}$. Therefore $\frac{x^{n}}{1+x^{2 n}}$ does not converge to 0 uniformly on $(0,1)$ and the convergence of $\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{2 n}}$ on $(0,1)$ is thus not uniform.
- Convergence is not uniform on $(1, \infty)$. The proof is similar to the $(0,1)$ case.

Exercise 3. Let $0<a<1$. Prove that $\sum_{n=1}^{\infty} \frac{x^{n}}{1+x^{n n}}$ converges uniformly on $(0, a)$.

- Properties of uniformly convergent sequence/series of functions.
- Continuity.

Let $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ (or $\left.\sum_{n=1}^{\infty} u_{n}(x)\right)$ on $[a, b]$. If
i. each $f_{n}(x)\left(u_{n}(x)\right)$ is continuous on $[a, b]$, and
ii. the convergence is uniform on $[a, b]$,
then $f(x)$ is continuous on $[a, b]$.

- Integrability.

Let $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ (or $\left.\sum_{n=1}^{\infty} u_{n}(x)\right)$ on $[a, b]$. If
i. each $f_{n}(x)\left(u_{n}(x)\right)$ is Riemann integrable on $[a, b]$, and
ii. the convergence is uniform on $[a, b]$,
then $f(x)$ is Riemann integrable on $[a, b]$.

- Differentiability.

Let $f(x):=\lim _{n \rightarrow \infty} f_{n}(x) \quad\left(\right.$ or $\left.\sum_{n=1}^{\infty} u_{n}(x)\right)$ and $\varphi(x):=\lim _{n \rightarrow \infty} f_{n}^{\prime}(x)$ $\left(\sum_{n=1}^{\infty} u_{n}^{\prime}(x)\right)$ on $[a, b]$. If

- both convergences to f and φ are uniform on $[a, b]$,
then $f^{\prime}(x)=\varphi(x)$ on $[a, b]$.
Example 2. Study $f(x):=\sum_{n=1}^{\infty} 2^{n} \sin \left(\frac{1}{3^{n} x}\right)$ on $(0, \infty)$.

Solution.

- Domain.

We have $\left|2^{n} \sin \left(\frac{1}{3^{n} x}\right)\right| \leqslant \frac{2^{n}}{3^{n} x}=\frac{1}{x}\left(\frac{2}{3}\right)^{n}$ therefore $f(x)$ is defined for all $x \in(0, \infty)$.

- Uniform convergence.

We have $M_{n}:=\sup _{(0, \infty)}\left|2^{n} \sin \left(\frac{1}{3^{n} x}\right)\right| \geqslant 2^{n} \sin \left(\frac{1}{3^{n} 3^{-n}}\right)=2^{n} \sin 1$. Thus $2^{n} \sin \left(\frac{1}{3^{n} x}\right)$ does not converge to 0 uniformly on ($0, \infty$) and therefore $\sum_{n=1}^{\infty} 2^{n} \sin \left(\frac{1}{3^{n} x}\right)$ does not converge uniformly on $(0, \infty)$.

- From $\left|2^{n} \sin \left(\frac{1}{3^{n} x}\right)\right| \leqslant \frac{1}{x}\left(\frac{2}{3}\right)^{n}$ it is clear that the convergence is uniform on (a, ∞) for every $a>0$ and consequently $f(x)$ is continuous on $(0, \infty)$.

Exercise 4. Prove that $f(x)$ is differentiable on $(0, \infty)$.
Problem 1. Is $f(x)$ infinitely differentiable or improperly integrable on $(0, \infty)$? Justify.
Problem 2. Is $f(x):=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{2^{n}}$ improperly integrable on $(0, \infty)$? Justify.
Example 3. Prove or disprove: Let $f(x):=\lim _{n \rightarrow \infty} f_{n}(x)$ (or $\sum_{n=1}^{\infty} u_{n}(x)$) on (a, b). If
i. each $f_{n}(x)\left(u_{n}(x)\right)$ is improperly integrable on (a, b), and
ii. the convergence is uniform on (a, b),
then $f(x)$ is improperly integrable on (a, b).
Solution. The claim is false. A counterexample is $f(x)=\frac{1}{x}$ and $f_{n}(x)=\frac{e^{-x / n}}{x}$ on $(1, \infty)$.

- Power series.

Let $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ be a power series with radius of convergence $R:=$ $\left[\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{1 / n}\right]^{-1}$. Define $f(x):=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$. Then
a) $f(x)$ is continuous on $\left(x_{0}-R, x_{0}+R\right)$.
b) $f(x)$ is differentiable on $\left(x_{0}-R, x_{0}+R\right)$, and $f^{\prime}(x)=\sum_{n=0}^{\infty}(n+1) a_{n+1}\left(x-x_{0}\right)^{n}$ on $\left(x_{0}-R, x_{0}+R\right)$.
c) $f(x)$ is infinitely differentiable on $\left(x_{0}-R, x_{0}+R\right)$, and

$$
\begin{equation*}
f^{(m)}(x)=\sum_{n=0}^{\infty}(n+m) \cdots(n+1) a_{n+m}\left(x-x_{0}\right)^{n} . \tag{1}
\end{equation*}
$$

d) Let $[a, b] \subset\left(x_{0}-R, x_{0}+R\right)$ be arbitrary. Then $f(x)$ is Riemann integrable on $[a, b]$ and furthermore

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\sum_{n=0}^{\infty} a_{n} \int_{a}^{b}\left(x-x_{0}\right)^{n} \mathrm{~d} x \tag{2}
\end{equation*}
$$

