MATH 118 WINTER 2015 LECTURE 32 (MAR. 9, 2015)

Midterm 2 Review: Improper Integration

- Improper integrability.
 - A function f(x) is improperly integrable on (a, b) if and only if
 - i. f(x) is locally integrable on (a, b), that is f(x) is Riemann integrable on every $[c, d] \subset (a, b)$;
 - ii. The double limit

$$\lim_{d \longrightarrow b^{-}} \left[\lim_{c \longrightarrow a^{+}} \int_{c}^{d} f(x) \, \mathrm{d}x \right] \tag{1}$$

exists and is finite.

Exercise 1. Let $a, b \in \mathbb{R}$ and f(x) be bounded on (a, b). Then f is improperly integrable on (a, b) if and only if f is Riemann integrable on (a, b).

• Equivalent condition for ii.

There is $x_0 \in (a, b)$ such that both limits

0

$$\lim_{a \to a+} \int_{c}^{x_{0}} f(x) \, \mathrm{d}x \text{ and } \lim_{d \longrightarrow b-} \int_{x_{0}}^{d} f(x) \, \mathrm{d}x \tag{2}$$

exist and are finite.

- Checking improper integrability.
 - Checking i.
 - If f(x) is continuous on (a, b) then i is satisfied;
 - If f(x) is monotone on (a, b) then i is satisfied.

If f(x) is neither monotone nor continuous, then more work needs to be done to check the local integrability.

- Methods for checking ii.
 - i. By definition. To do this, we need to first calculate the indefinite integral $\int f(x) dx = F(x) + C$ and then study $\lim_{d \to b^-} [\lim_{c \to a^+} (F(d) F(c))]$.
 - ii. By Cauchy. For example, if f(x) is Riemann integrable on [a, d] for every $d \in (a, b)$, then f is improperly integrable on (a, b) if and only if

$$\forall \varepsilon > 0, \exists d_0 \in (a, b), \forall d_1, d_2 \in (d_0, b), \qquad \left| \int_{d_1}^{d_2} f(x) \, \mathrm{d}x \right| < \varepsilon.$$
(3)

iii. By comparison.

- If $|f(x)| \leq g(x)$ and g(x) is improperly integrable on (a, b), so is f.
- If $f(x) \ge |g(x)|$ and g(x) is not improperly integrable on (a, b), then f is not improperly integrable on (a, b).

Exercise 2. Prove the second claim.

- In practice, usually compare with x^{α} for some $\alpha \in \mathbb{R}$.

Exercise 3. Let $f(x): (0, \infty) \mapsto \mathbb{R}$ be locally integrable and such that

$$|f(x)| \leq c_1 x^{\alpha_1} \text{ on } (0,1); \qquad |f(x)| \leq c_2 x^{\alpha_2} \text{ on } (1,\infty)$$

$$\tag{4}$$

for some $c_1, c_2 > 0$, $\alpha_1 > -1$ and $\alpha_2 < -1$, then f(x) is improperly integrable on $(0, \infty)$. Exercise 4. Let $f(x): (0, \infty) \mapsto \mathbb{R}$ be locally integrable and such that

$$\lim_{x \to 0+} \frac{|f(x)|}{x^{\alpha_1}} = c_1, \quad \lim_{x \to \infty} \frac{|f(x)|}{x^{\alpha_2}} = c_2 \tag{5}$$

for some $c_1, c_2 > 0$, $\alpha_1 > -1$ and $\alpha_2 < -1$, then f(x) is improperly integrable on $(0, \infty)$.

iv. Dirichlet and Abel.

Note. We will only state the rough idea here. Please check Lecture 23 (FEb. 13, 2015) for exact statements of these theorems.

- Dirichlet. $\int_{d_1}^{d_2} f(x) dx$ uniformly bounded in $d_1, d_2, g(x)$ monotone and $\lim_{x\to\infty} g(x) = 0$, then fg is improperly integrable on $(0,\infty)$.
- Abel. f(x) is improperly integrable on $(0, \infty)$, g(x) monotone and bounded, then fg is improperly integrable on $(0, \infty)$.

Exercise 5. Prove that $\frac{\sin x}{x^{\alpha}}$ is improperly integrable on $(1, \infty)$ when $\alpha > 0$.

 \circ Examples.

Example 1. Is $\frac{\ln x}{(1+x^2)}$ improperly integrable on $(0,\infty)$?

$$\left|\frac{\ln x}{(1+x)^2}\right| \le |\ln x| \le c_1 x^{-1/2} \text{ on } (0,1)$$
(6)

and

$$\left|\frac{\ln x}{(1+x)^2}\right| \leqslant \frac{\left|\ln x\right|}{x^2} \leqslant c_2 x^{-3/2} \text{ on } (1,\infty)$$

$$\tag{7}$$

therefore the function is improperly integrable on $(0, \infty)$.

Example 2. Is $\sqrt{\tan x}$ improperly integrable on $(0, \frac{\pi}{2})$?

Solution. Yes. We make a change of variable: $t = \tan x$. Then

$$\int_{0}^{\pi/2} \sqrt{\tan x} \, \mathrm{d}x = \int_{0}^{\infty} \frac{\sqrt{t}}{1+t^2} \, \mathrm{d}t.$$
 (8)

As

$$\left|\frac{\sqrt{t}}{1+t^2}\right| \leqslant \frac{\sqrt{t}}{t^2} = t^{-3/2} \text{ on } (1,\infty)$$
(9)

and

$$\left|\frac{\sqrt{t}}{1+t^2}\right| \leqslant \sqrt{t} \leqslant 1 \text{ on } (0,1) \tag{10}$$

the improper integrability follows.

Example 3. Is $\frac{1-\cos x}{x^2}$ improperly integrable on $(0,\infty)$? **Solution.** Yes. We have on $(1,\infty) \left| \frac{1-\cos x}{x^2} \right| \leq 2x^{-2}$ and on (0,1), by Taylor expansion,

$$\left|\frac{1-\cos x}{x^2}\right| = \left|\frac{\frac{\cos c}{2!}x^2}{x^2}\right| \leqslant \frac{1}{2}.$$
(11)

Exercise 6. Is $\ln(1+\frac{1}{x}) - \frac{1}{1+x}$ improperly integrable on $(1,\infty)$?