Math 118 Winter 2015 Lecture 31 (Mar. 6, 2015)

- (van der Waerden's Example) Define $u_{0}(x)$ through:

$$
\begin{equation*}
u_{0}(x)=|x| \text { on }\left[-\frac{1}{2}, \frac{1}{2}\right], \quad \forall x \in \mathbb{R}, u_{0}(x)=u_{0}(x+1) . \tag{1}
\end{equation*}
$$

Exercise 1. Prove that $u_{0}(x)=\min _{n \in \mathbb{Z}}|x-n|$.
Now define

$$
\begin{equation*}
f(x):=\sum_{n=1}^{\infty} 4^{-n} u_{0}\left(4^{n} x\right) \tag{2}
\end{equation*}
$$

Exercise 2. Prove that $f(x)$ is continuous on \mathbb{R}.
We prove that $f(x)$ is nowhere differentiable. Take any $x \in[0,1)$. For each $m \in \mathbb{N}$ we define $h_{m}=\epsilon_{m} 4^{-m}$ and determine the sign $\epsilon_{m}= \pm 1$ as follows. Divide $[0,1)$ into 4^{m} intervals $\left[0,4^{-m}\right),\left[4^{-m}, 2 \cdot 4^{-m}\right), \ldots$ Let x be in the k-th interval. If k is odd, we set $\epsilon_{m}=1$, if k is even, we set $\epsilon_{m}=-1$.

Now we easily see that

$$
\begin{equation*}
f\left(x+h_{m}\right)-f(x)=\sum_{n=1}^{m-1} 4^{-n}\left[u_{0}\left(4^{n} x+4^{n} h_{m}\right)-u_{0}\left(4^{n} x\right)\right] . \tag{3}
\end{equation*}
$$

Furthermore by our construction we have

$$
\begin{equation*}
\frac{4^{-n}\left[u_{0}\left(4^{n} x+4^{n} h_{m}\right)-u_{0}\left(4^{n} x\right)\right]}{h_{m}}= \pm 1 \tag{4}
\end{equation*}
$$

for all m, n. Consequently

$$
\begin{equation*}
\frac{f\left(x+h_{m}\right)-f(x)}{h_{m}}=\sum_{n=1}^{m-1} \frac{4^{-n}\left[u_{0}\left(4^{n} x+4^{n} h_{m}\right)-u_{0}\left(4^{n} x\right)\right]}{h_{m}} \tag{5}
\end{equation*}
$$

is odd when m is even and even when m is odd. Therefore $\lim _{m \rightarrow \infty} \frac{f\left(x+h_{m}\right)-f(x)}{h_{m}}$ does not exist.

Exercise 3. Prove that if $\frac{f\left(x+h_{m}\right)-f(x)}{h_{m}}$ is odd when m is even and even when m is odd then $\lim _{m \rightarrow \infty} \frac{f\left(x+h_{m}\right)-f(x)}{h_{m}}$ does not exist.
Problem 1. Let

$$
\begin{equation*}
g(x):=\sum_{n=1}^{\infty} 10^{-n} u_{0}\left(10^{n} x\right) . \tag{6}
\end{equation*}
$$

Prove that $g(x)$ is continuous on \mathbb{R} but nowhere differentiable. Does
have the same property?

$$
\begin{equation*}
h(x):=\sum_{n=1}^{\infty} 5^{-n} u_{0}\left(5^{n} x\right) \tag{7}
\end{equation*}
$$

- (Weierstrass's Example) van der Waerden's construction above is in fact a simplified version of the construction by Karl Weierstrass (1815-1897) in 1872, which is the first such "everywhere continuous nowhere differentiable" function ever constructed and shocked the whole mathematical community.

Weierstrass' original example is

$$
\begin{equation*}
f(x):=\sum_{n=1}^{\infty} b^{n} \cos \left(a^{n} \pi x\right) \tag{8}
\end{equation*}
$$

where $b \in(0,1)$ and a is an odd integer with $a b>1+\frac{3 \pi}{2}$.
Example 1. $f(x):=\sum_{n=1}^{\infty} \frac{\cos \left(21^{n} \pi x\right)}{3^{n}}$ is continuous on \mathbb{R} but nowhere differentiable.
Proof. (Method 1) Continuity follows easily from the uniform convergence of the series.
Exercise 4. Prove that $f(x)$ is continuous on \mathbb{R}.
Now fix $r \in \mathbb{R}$ we will prove $f(x)$ is not differentiable at r.
For every $m \in \mathbb{N}$, let $\alpha_{m} \in \mathbb{Z}$ be such that

$$
\begin{equation*}
\alpha_{m}-\frac{1}{2}<21^{m} r \leqslant \alpha_{m}+\frac{1}{2} . \tag{9}
\end{equation*}
$$

Set

$$
\begin{equation*}
\varepsilon_{m}:=21^{m} r-\alpha_{m} \in\left(-\frac{1}{2}, \frac{1}{2}\right], \quad h_{m}:=\frac{1-\varepsilon_{m}}{21^{m}} \in\left(\frac{1 / 2}{21^{m}}, \frac{3 / 2}{21^{m}}\right) . \tag{10}
\end{equation*}
$$

Now consider

$$
\begin{align*}
\frac{f\left(r+h_{m}\right)-f(r)}{h_{m}}= & \sum_{k=1}^{m-1} \frac{\cos \left(21^{k} \pi r+21^{k} \pi h_{m}\right)-\cos \left(21^{k} \pi r\right)}{3^{k} h_{m}} \\
& +\sum_{k=m}^{\infty} \frac{\cos \left(21^{k} \pi r+21^{k} \pi h_{m}\right)-\cos \left(21^{k} \pi r\right)}{3^{k} h_{m}} \\
= & A+B . \tag{11}
\end{align*}
$$

Exercise 5. Prove that $|A| \leqslant \frac{\pi}{6} \cdot 7^{m}$. (Hint: ${ }^{1}$).
For B, notice that for $k \geqslant m$,

$$
\begin{gather*}
\cos \left(21^{k} \pi r+21^{k} \pi h_{m}\right)=\cos \left(21^{k-m}\left(\alpha_{m}+1\right) \pi\right)=(-1)^{\alpha_{m}+1} ; \tag{12}\\
\cos \left(21^{k} \pi r\right)=\cos \left(21^{k-m} \pi \alpha_{m}+21^{k-m} \pi \varepsilon_{m}\right)=(-1)^{\alpha_{m}} \cos \left(21^{k-m} \pi \varepsilon_{m}\right) . \tag{13}
\end{gather*}
$$

Therefore (recalling (10): $\left|\varepsilon_{m}\right| \leqslant \frac{1}{2}$)

$$
\begin{equation*}
|B|=\frac{1}{h_{m}}\left|\sum_{k=m}^{\infty} \frac{1+\cos \left(21^{k-m} \pi \varepsilon_{m}\right)}{3^{k}}\right|>\frac{1}{h_{m}} \frac{1+\cos \left(\pi \varepsilon_{m}\right)}{3^{m}} \geqslant \frac{1}{h_{m} 3^{m}}>\frac{2}{3} 7^{m} . \tag{14}
\end{equation*}
$$

As $\frac{2}{3}>\frac{\pi}{6}$ we see that

$$
\begin{equation*}
\left|\frac{f\left(r+h_{m}\right)-f(r)}{h_{m}}\right|>\left(\frac{2}{3}-\frac{\pi}{6}\right) 7^{m} \longrightarrow \infty \text { as } m \longrightarrow \infty . \tag{15}
\end{equation*}
$$

Consequently $\lim _{h \rightarrow 0} \frac{f(r+h)-f(r)}{h}$ cannot exist and $f(x)$ is not differentiable at r.
Proof. (Method 2) We take $h_{m}:=\frac{2 s}{21^{m+1}}$ where $s<\frac{63}{4}$ is a natural number. Observe that when $k \geqslant m+1$, we have

$$
\begin{equation*}
21^{k} h_{m}=2 s 21^{k-m-1} \tag{16}
\end{equation*}
$$

is even and therefore

$$
\begin{equation*}
\cos \left(21^{k} \pi\left(r+h_{m}\right)\right)=\cos \left(21^{k} \pi r\right) \tag{17}
\end{equation*}
$$

[^0]This gives

$$
\begin{align*}
\frac{f\left(r+h_{m}\right)-f(r)}{h_{m}}= & \sum_{k=1}^{m} \frac{\cos \left(21^{k} \pi r+21^{k} \pi h_{m}\right)-\cos \left(21^{k} \pi r\right)}{3^{k} h_{m}} \\
= & \sum_{k=1}^{m-1} \frac{\cos \left(21^{k} \pi r+21^{k} \pi h_{m}\right)-\cos \left(21^{k} \pi r\right)}{3^{k} h_{m}} \\
& +\frac{\cos \left(21^{m} \pi r+21^{m} \pi h_{m}\right)-\cos \left(21^{m} \pi r\right)}{3^{m} h_{m}}=: A+B . \tag{18}
\end{align*}
$$

Exercise 6. Prove that $|A| \leqslant \frac{\pi}{6} \cdot 7^{m}$.
For the second term, we have by the trig identity $\cos x-\cos y=2 \sin \left(\frac{y+x}{2}\right) \sin \left(\frac{y-x}{2}\right)$ and the definition of h_{m}

$$
\begin{align*}
|B| & =\frac{2}{3^{m} h_{m}}\left|\sin \frac{21^{m} \pi h_{m}}{2}\right|\left|\sin \left(21^{m} \pi r+\frac{21^{m} \pi h_{m}}{2}\right)\right| \\
& =\frac{21}{s} \cdot 7^{m}\left|\sin \frac{s}{21} \pi\right|\left|\sin \left(21^{m} \pi r+\frac{s}{21} \pi\right)\right| \\
& =7^{m} \pi \frac{\left|\sin \frac{s}{21} \pi\right|}{\frac{s}{21} \pi}\left|\sin \left(21^{m} \pi r+\frac{s}{21} \pi\right)\right| \\
& \geqslant \frac{4}{3 \sqrt{2}} \cdot 7^{m}\left|\sin \left(21^{m} \pi r+\frac{s}{21} \pi\right)\right| . \tag{19}
\end{align*}
$$

Exercise 7. Prove that when $s<\frac{63}{4}, \frac{\left|\sin \frac{8}{21} \pi\right|}{\frac{2}{21} \pi}>\frac{4}{3 \sqrt{2} \pi}$. (Hint: ${ }^{2}$)
Now consider the expansion of r in base 21:

$$
\begin{equation*}
r=r_{0}+\frac{r_{1}}{21}+\frac{r_{2}}{21^{2}}+\cdots+\frac{r_{m}}{21^{m}}+\cdots \tag{20}
\end{equation*}
$$

We have

$$
\begin{equation*}
\sin \left(21^{m} \pi r+\frac{s}{21} \pi\right)=\sin \left(\frac{r_{m+1}+s}{21} \pi+\frac{r_{m+2}}{21^{2}} \pi+\cdots\right) \tag{21}
\end{equation*}
$$

 $\left.\frac{s_{m 2}}{21} \pi\right) \leqslant-\frac{1}{\sqrt{2}}$.
Exercise 9. Let $h_{m 1}:=\frac{2 s_{m 1}}{21^{m+1}}, h_{m 2}:=\frac{2 s_{m 2}}{21^{m+1}}$. Prove that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left|\frac{f\left(r+h_{m 1}\right)-f(r)}{h_{m 1}}-\frac{f\left(r+h_{m 2}\right)-f(r)}{h_{m 2}}\right|=\infty \tag{22}
\end{equation*}
$$

and conclude that f is not differentiable at r.
Problem 2. Prove that

$$
\begin{equation*}
f(x):=\sum_{n=1}^{\infty} b^{n} \cos \left(a^{n} \pi x\right) \tag{23}
\end{equation*}
$$

where $b \in(0,1)$ and a is an odd integer with $a b>1+\frac{3 \pi}{2}$ is continuous on \mathbb{R} but nowhere differentiable.

- (Riemann's Example) Riemann proposed ${ }^{3}$ the following function

$$
\begin{equation*}
g(x):=\sum_{n=1}^{\infty} \frac{\sin \left(n^{2} x\right)}{n^{2}} \tag{24}
\end{equation*}
$$

2. Monotonicity of $\frac{\sin x}{x}$.
3. There is no official record, but Weierstrass stated in a 1875 letter that he "knew" Riemann had constructed this function as early as 1861 .
as a candidate for "everywhere continuous but nowhere differentiable" functions. $g(x)$ may look similar to $f(x)$ but the replacement of $\sin (n x)$ by $\sin \left(n^{2} x\right)$ totally changed the game. The continuity part is as trivial as that for $f(x)$, but the differentiability part is much more difficult. G. H. Hardy in 1916 prove that $g(x)$ is indeed not differentiable at x when $x / \pi \notin \mathbb{Q}$. $J_{2 r+1}$ Joseph L. Gerver ${ }^{4}$ finally proved in 1970/1972 that $g^{\prime}(x)=-\frac{1}{2}$ at all points of the form $\frac{2 r+1}{2 s+1} \pi$ where $r, s \in \mathbb{Z}$, and $g(x)$ is not differentiable at every other rational multiple of π. Thus the differentiability of $g(x)$ is completely understood.
[^1]
[^0]: 1. MVT.
[^1]: 4. Now at Rutgers University: http://math.camden.rutgers.edu/faculty/.
