
Math 118 Winter 2015 Lecture 31 (Mar. 6, 2015)

• (van der Waerden’s Example) Define u0(x) through:

u0(x) = |x| on
[

−1
2
,
1
2

]

, ∀x∈R, u0(x) =u0(x+1). (1)

Exercise 1. Prove that u0(x) =minn∈Z |x−n|.

Now define

f(x) :=
∑

n=1

∞

4−n u0(4
n x). (2)

Exercise 2. Prove that f(x) is continuous on R.

We prove that f(x) is nowhere differentiable. Take any x ∈ [0, 1). For each m ∈ N we

define hm = ǫm 4−m and determine the sign ǫm =±1 as follows. Divide [0,1) into 4m intervals
[0, 4−m), [4−m, 2 · 4−m), ... Let x be in the k-th interval. If k is odd, we set ǫm = 1, if k is
even, we set ǫm =−1.

Now we easily see that

f(x+ hm)− f(x)=
∑

n=1

m−1

4−n [u0(4
n x+4n hm)−u0(4

n x)]. (3)

Furthermore by our construction we have

4−n [u0(4n x+ 4n hm)−u0(4n x)]
hm

=±1 (4)

for all m, n. Consequently

f(x +hm)− f(x)
hm

=
∑

n=1

m−1
4−n [u0(4n x +4n hm)−u0(4n x)]

hm
(5)

is odd when m is even and even when m is odd. Therefore limm→∞

f(x+ hm)− f(x)

hm
does not

exist.

Exercise 3. Prove that if
f(x + hm)− f(x)

h
m

is odd when m is even and even when m is odd then

limm→∞
f(x + hm)− f(x)

hm

does not exist.

Problem 1. Let

g(x) :=
∑

n=1

∞

10−n u0(10
n x). (6)

Prove that g(x) is continuous on R but nowhere differentiable. Does

h(x) :=
∑

n=1

∞

5−n u0(5
n x) (7)

have the same property?

• (Weierstrass’s Example) van der Waerden’s construction above is in fact a simplified
version of the construction by Karl Weierstrass (1815 - 1897) in 1872, which is the first
such “everywhere continuous nowhere differentiable” function ever constructed and shocked
the whole mathematical community.

Weierstrass’ original example is

f(x) :=
∑

n=1

∞

bn cos (an πx) (8)



where b∈ (0, 1) and a is an odd integer with a b > 1 +
3 π

2
.

Example 1. f(x) :=
∑

n=1
∞ cos (21n π x)

3n is continuous on R but nowhere differentiable.

Proof. (Method 1) Continuity follows easily from the uniform convergence of the series.

Exercise 4. Prove that f(x) is continuous on R.

Now fix r ∈R we will prove f(x) is not differentiable at r.

For every m∈N, let αm∈Z be such that

αm − 1
2

< 21m r 6αm +
1
2
. (9)

Set

εm := 21m r −αm∈
(

−1
2
,
1
2

]

, hm :=
1− εm

21m
∈

(

1/2

21m
,
3/2

21m

)

. (10)

Now consider

f(r +hm)− f(r)
hm

=
∑

k=1

m−1
cos (21k π r + 21k πhm)− cos (21k π r)

3k hm

+
∑

k=m

∞

cos (21k π r + 21k πhm)− cos (21k π r)

3k hm

=: A +B. (11)

Exercise 5. Prove that |A|6
π

6
· 7m. (Hint:1).

For B, notice that for k > m,

cos (21k π r + 21k πhm)= cos (21k−m (αm +1) π)= (−1)αm+1; (12)

cos (21k π r) = cos (21k−mπ αm + 21k−m πεm) = (−1)αm cos (21k−m π εm). (13)

Therefore (recalling (10): |εm|6 1

2
)

|B |= 1
hm

∣

∣

∣

∣

∣

∑

k=m

∞

1 + cos (21k−m π εm)

3k

∣

∣

∣

∣

∣

>
1

hm

1+ cos (π εm)
3m

>
1

hm 3m
>

2
3

7m. (14)

As
2

3
>

π

6
we see that

∣

∣

∣

∣

f(r + hm)− f(r)
hm

∣

∣

∣

∣

>

(

2
3
− π

6

)

7m−→∞ as m−→∞. (15)

Consequently limh→0
f(r + h)− f(r)

h
cannot exist and f(x) is not differentiable at r. �

Proof. (Method 2) We take hm :=
2 s

21m+1 where s<
63

4
is a natural number. Observe that

when k > m+ 1, we have

21k hm =2 s 21k−m−1 (16)

is even and therefore

cos (21k π (r + hm)) = cos (21k π r). (17)

1. MVT.



This gives

f(r +hm)− f(r)
hm

=
∑

k=1

m
cos (21k π r + 21k πhm)− cos (21k π r)

3k hm

=
∑

k=1

m−1
cos (21k π r + 21k πhm)− cos (21k π r)

3k hm

+
cos (21m π r + 21m π hm)− cos (21m π r)

3m hm
=:A +B. (18)

Exercise 6. Prove that |A|6
π

6
· 7m.

For the second term, we have by the trig identity cos x − cos y = 2 sin
( y + x

2

)

sin
( y − x

2

)

and the definition of hm

|B | =
2

3m hm

∣

∣

∣

∣

sin
21m π hm

2

∣

∣

∣

∣

∣

∣

∣

∣

sin

(

21m π r +
21m πhm

2

)
∣

∣

∣

∣

=
21

s
· 7m

∣

∣

∣
sin

s

21
π
∣

∣

∣

∣

∣

∣
sin

(

21m π r +
s

21
π

)∣

∣

∣

= 7m π

∣

∣sin
s

21
π
∣

∣

s

21
π

∣

∣

∣sin
(

21m π r +
s

21
π

)
∣

∣

∣

>
4

3 2
√ · 7m

∣

∣

∣sin
(

21m π r +
s

21
π

)
∣

∣

∣. (19)

Exercise 7. Prove that when s <
63

4
,

∣

∣sin
s

21
π

∣

∣

s

21
π

>
4

3 2
√

π
. (Hint:2 )

Now consider the expansion of r in base 21:

r = r0 +
r1

21
+

r2

212
+ ···+ rm

21m
+ ···. (20)

We have

sin
(

21m π r +
s

21
π

)

= sin
(

rm+1 + s

21
π +

rm+2

212 π + ···
)

. (21)

Exercise 8. Prove that there are sm1, sm2 <
63

4
such that sin

(

21m π r +
sm1

21
π

)

>
1

2
√ and sin

(

21m π r +
sm2

21
π

)

6−
1

2
√ .

Exercise 9. Let hm1 :=
2 sm1

21m+1
, hm2 :=

2 sm2

21m+1
. Prove that

lim
m→∞

∣

∣

∣

∣

f(r + hm1)− f(r)

hm1
−

f(r + hm2)− f(r)

hm2

∣

∣

∣

∣

=∞ (22)

and conclude that f is not differentiable at r. �

Problem 2. Prove that

f(x) :=
∑

n=1

∞

bn cos (an π x) (23)

where b∈ (0, 1) and a is an odd integer with a b > 1+
3 π

2
is continuous on R but nowhere differentiable.

• (Riemann’s Example) Riemann proposed3 the following function

g(x):=
∑

n=1

∞

sin (n2 x)

n2
(24)

2. Monotonicity of
sin x

x
.

3. There is no official record, but Weierstrass stated in a 1875 letter that he “knew” Riemann had constructed this function

as early as 1861.



as a candidate for “everywhere continuous but nowhere differentiable” functions. g(x) may
look similar to f(x) but the replacement of sin (n x) by sin (n2 x) totally changed the game.
The continuity part is as trivial as that for f(x), but the differentiability part is much more
difficult. G. H. Hardy in 1916 prove that g(x) is indeed not differentiable at x when x/π∈/ Q.
Joseph L. Gerver4 finally proved in 1970/1972 that g ′(x) = −1

2
at all points of the form

2 r +1

2 s + 1
π where r, s ∈ Z, and g(x) is not differentiable at every other rational multiple of π.

Thus the differentiability of g(x) is completely understood.

4. Now at Rutgers University: http://math.camden.rutgers.edu/faculty/.
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