Math 118 Winter 2015 Homework 7 Solutions

Due Thursday Mar. 12 3pm in Assignment Box

Question 1. (5 Pts) Let $a<c<b$. Assume $f_{n} \longrightarrow f$ uniformly on $[a, c]$ and $[c, b]$. Prove that $f_{n} \rightarrow f$ uniformly on $[a, b]$.

Proof. Let $\varepsilon>0$ be arbitrary. As $f_{n} \longrightarrow f$ uniformly on $[a, c]$ there is $N_{1} \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n>N_{1}, \forall x \in[a, c], \quad\left|f_{n}(x)-f(x)\right|<\varepsilon ; \tag{1}
\end{equation*}
$$

As $f_{n} \longrightarrow f$ uniformly on $[c, b]$, there is $N_{2} \in \mathbb{N}$ such that

$$
\begin{equation*}
\forall n>N_{2}, \forall x \in[c, b], \quad\left|f_{n}(x)-f(x)\right|<\varepsilon . \tag{2}
\end{equation*}
$$

Now set $N=\max \left\{N_{1}, N_{2}\right\}$. Then for every $n>N$, we have $\left|f_{n}(x)-f(x)\right|<\varepsilon$ for every $x \in[a, c]$ and every $x \in[c, b]$, that is for every $x \in[a, b]$. The proof ends.

Question 2. (5 PTS) Let $f(x)=\sum_{n=1}^{\infty} \frac{1}{(x+n)^{2}}$. Prove that f is continuous on $[0, \infty)$ and furthermore $\int_{0}^{1} f(x) \mathrm{d} x=1$.

Proof. It is clear that $\forall x \in[0, \infty),\left|\frac{1}{(x+n)^{2}}\right| \leqslant \frac{1}{n^{2}}$. As $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, the convergence of $\sum_{n=1}^{\infty} \frac{1}{(x+n)^{2}}$ is uniform. The continuity of f now follows from the continuity of each $\frac{1}{(x+n)^{2}}$.

Since each $\frac{1}{(x+n)^{2}}$ is integrable on $[0,1]$, we have

$$
\begin{align*}
& \int_{0}^{1} f(x) \mathrm{d} x=\sum_{n=1}^{\infty} \int_{0}^{1} \frac{1}{(x+n)^{2}} \mathrm{~d} x \\
& \xlongequal{u=x+n} \sum_{n=1}^{\infty} \int_{n}^{n+1} \frac{1}{u^{2}} \mathrm{~d} u \\
&=\int_{1}^{\infty} \frac{1}{u^{2}} \mathrm{~d} u \\
&=1 . \tag{3}
\end{align*}
$$

Thus ends the proof.
Question 3. (5 PTs) Let $\sum_{n=0}^{\infty} a_{n} x^{n}$ and $\sum_{n=0}^{\infty} b_{n} x^{n}$ be two power series. Assume that there is $r>0$ such that

$$
\begin{equation*}
\forall|x|<r, \quad \sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n} . \tag{4}
\end{equation*}
$$

Prove $\forall n \in \mathbb{N} \cup\{0\}$, $a_{n}=b_{n}$.
Proof. Let $f(x):=\sum_{n=0}^{\infty} a_{n} x^{n}=\sum_{n=0}^{\infty} b_{n} x^{n}$ on $(-r, r)$. As both are power series, the radii of convergence are both $\geqslant r$. Consequently on ($-r, r$) we have

$$
\begin{align*}
f^{\prime}(x) & =\sum_{n=1}^{\infty} n a_{n} x^{n-1}=\sum_{n=1}^{\infty} n b_{n} x^{n-1}, \tag{5}\\
f^{\prime \prime}(x) & =\sum_{n=2}^{\infty} n(n-1) a_{n} x^{n-2}=\sum_{n=2}^{\infty} n(n-1) b_{n} x^{n-2}, \tag{6}
\end{align*}
$$

Setting $x=0$ we have $a_{1}=f^{\prime}(0)=b_{1}, a_{2}=f^{\prime \prime}(0)=b_{2}, \ldots$.
QUestion 4. (5 PTs) Let $f(x):=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$. Is $f(x)$ improperly integrable on $(0, \infty)$? Justify.
Solution. No. First notice that $f(x)$ is periodic, that is $f(x+2 \pi)=f(x)$ for all $x \in \mathbb{R}$.
Next we calculate

$$
\begin{equation*}
f\left(\frac{\pi}{2}\right)=\sum_{n=1}^{\infty} \frac{\sin \left(\frac{n \pi}{2}\right)}{n^{2}}=1-\frac{1}{3^{2}}+\frac{1}{5^{2}}-\frac{1}{7^{2}}+\cdots \tag{7}
\end{equation*}
$$

Let S_{n} be the partial sum of the first n terms of this series. Then clearly $S_{2 n} \geqslant 1-\frac{1}{3^{2}}=\frac{8}{9}$ for all $n \in \mathbb{N}$. Consequently $f\left(\frac{\pi}{2}\right) \geqslant \frac{8}{9}$.

As $\left|\frac{\sin (n x)}{n^{2}}\right| \leqslant \frac{1}{n^{2}}$ for all $n \in \mathbb{N}$ and $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, the convergence of $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$ is uniform and $f(x)$ is thus continuous. Therefore there is $\delta \in\left(0, \frac{\pi}{2}\right)$ such that $f(x) \geqslant \frac{1}{2}$ for all $x \in\left(\frac{\pi}{2}-\delta, \frac{\pi}{2}+\delta\right)$.

Now let $F(d):=\int_{0}^{d} f(x) \mathrm{d} x$. We will prove that $F(d)$ is not Cauchy which implies that $f(x)$ is not improperly integrable on $(0, \infty)$.

To show this, let $d_{0}>0$ be arbitrary. There is $n \in \mathbb{N}$ such that $2 n \pi>d_{0}$. Now set $d_{1}=$ $2 n \pi+\frac{\pi}{2}-\delta, d_{2}=2 n \pi+\frac{\pi}{2}+\delta$. We have $d_{2}>d_{1}>d$ and

$$
\begin{equation*}
\left|F\left(d_{2}\right)-F\left(d_{1}\right)\right|=\left|\int_{2 n \pi+\frac{\pi}{2}-\delta}^{2 n \pi+\frac{\pi}{2}+\delta} f(x) \mathrm{d} x\right|=\left|\int_{\frac{\pi}{2}-\delta}^{\frac{\pi}{2}+\delta} f(x) \mathrm{d} x\right|=\int_{\frac{\pi}{2}-\delta}^{\frac{\pi}{2}+\delta} f(x) \mathrm{d} x \geqslant \delta . \tag{8}
\end{equation*}
$$

Thus $F(d)$ is not Cauchy and the proof ends.

