MATH 118 WINTER 2015 HOMEWORK 7

DUE THURSDAY MAR. 12 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Let a < c < b. Assume $f_n \longrightarrow f$ uniformly on [a, c] and [c, b]. Prove that $f_n \rightarrow f$ uniformly on [a, b].

QUESTION 2. (5 PTS) Let $f(x) = \sum_{n=1}^{\infty} \frac{1}{(x+n)^2}$. Prove that f is continuous on $[0, \infty)$ and furthermore $\int_0^1 f(x) dx = 1$.

QUESTION 3. (5 PTS) Let $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ be two power series. Assume that there is r > 0 such that

$$\forall |x| < r, \qquad \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} b_n x^n. \tag{1}$$

Prove $\forall n \in \mathbb{N} \cup \{0\}, a_n = b_n$.

QUESTION 4. (5 PTS) Let $f(x) := \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$. Is f(x) improperly integrable on $(0,\infty)$? Justify.