• Recall the theory of uniform convergence.

THEOREM 1. (PROPERTIES OF UNIFORMLY CONVERGENT SERIES) Let $\sum_{n=1}^{\infty} u_n(x)$ be a infinite series of functions. Assume . Then

- *i.* If $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b] to f(x) and each $u_n(x)$ is continuous, then f(x) is continuous on [a, b];
- ii. If each $u_n(x)$ is differentiable on (a, b) and
 - ∑_{n=1}[∞] u_n(x₀) converges for some x₀ ∈ (a, b);
 ∑_{n=1}[∞] u'_n(x) converges to φ(x) uniformly on (a, b),

then

- 1. $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly to some f(x) on (a,b),
- 2. f is differentiable and $f'(x) = \varphi(x)$ on (a, b).
- iii. If $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly to f(x) on [a, b] and each $u_n(x)$ is integrable on [a, b], then f(x) is integrable on [a, b] and furthermore

$$\sum_{n=1}^{\infty} \int_{a}^{b} u_n(x) \,\mathrm{d}x = \int_{a}^{b} f(x) \,\mathrm{d}x. \tag{1}$$

• An example of trigonometric series.

We discuss the continuity, integrability, and differentiability of the function

$$f(x) := \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}.$$
 (2)

1. The function is defined for all $x \in \mathbb{R}$.

Proof. Let $x \in \mathbb{R}$ be arbitrary. Then we have

$$\left|\frac{\sin(n\,x)}{n^2}\right| \leqslant \frac{1}{n^2}.\tag{3}$$

As $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, by Comparison Theorem we have the convergence of $\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2}$.

2. The function is continuous on \mathbb{R} .

Proof. We prove the convergence is uniform on \mathbb{R} . This follows immediately from (3), the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^2}$, and Weierstrass' M-test.

Now since for each fixed n, $\frac{\sin(nx)}{n^2}$ is continuous on \mathbb{R} , f(x) is also continuous on \mathbb{R} .

3. The function is Riemann integrable on any compact interval $[a, b] \subset \mathbb{R}$, and furthermore

$$\int_{a}^{b} f(x) \, \mathrm{d}x = \sum_{n=1}^{\infty} \int_{a}^{b} \frac{\sin(n\,x)}{n^2} \, \mathrm{d}x. \tag{4}$$

Proof. This follows immediately from the uniform convergence we have just proved. \Box

4. The function is differentiable at every $x \neq 2 k \pi$ ($k \in \mathbb{Z}$), and furthermore at such x,

$$f'(x) = \sum_{n=1}^{\infty} \frac{\cos(nx)}{n}.$$
(5)

Proof. Since

$$\left(\frac{\sin(n\,x)}{n^2}\right)' = \frac{\cos(n\,x)}{n},\tag{6}$$

all we need to show is the uniform convergence of

$$\sum_{n=1}^{\infty} \frac{\cos(nx)}{n}.$$
(7)

First it is clear that the series does not converge for $x = 2 k \pi$ for any $k \in \mathbb{Z}$. Thus in the following we focus on $x \neq 2 k \pi$.

To prove the convergence we apply Abel's re-summation trick:

• First we obtain a good formula for

$$S_n(x) := \cos x + \dots + \cos(n x). \tag{8}$$

We have

$$S_{n}(x) = \frac{\sin(x/2)}{\sin(x/2)} [\cos x + \dots + \cos(n x)]$$

$$= \frac{1}{\sin(x/2)} [\sin(x/2) \cos x + \dots + \sin(x/2) \cos(n x)]$$

$$= \frac{1}{2\sin(x/2)} \left[\left(\sin\left(x + \frac{x}{2}\right) - \sin\left(x - \frac{x}{2}\right) \right) + \dots + \left(\sin\left(n x + \frac{x}{2}\right) - \sin\left(n x - \frac{x}{2}\right) \right) \right]$$

$$= \frac{\sin(n x - \frac{x}{2})}{2\sin(x/2)} - \frac{1}{2}.$$
(9)

We see that for any compact interval [a, b] not containing 2 $k \pi$, there is M = M(a, b) (that is, depending on a, b – more precisely depending on the distance between a, b and the nearest $2 k \pi$) such that

$$\forall n \in \mathbb{N}, \quad \forall x \in [a, b], \qquad |S_n(x)| < M.$$
(10)

• Now we apply the re-summation trick. For any m > n, we have

$$\frac{\cos((n+1)x)}{n+1} + \dots + \frac{\cos(mx)}{m} = \left| \frac{S_{n+1}(x) - S_n(x)}{n+1} + \dots + \frac{S_m(x) - S_{m-1}(x)}{m} \right|$$

$$= \left| \frac{S_m(x)}{m} - \frac{S_n(x)}{n+1} + S_{n+1}(x) \left(\frac{1}{n+1} - \frac{1}{n+2} \right) + \dots + S_{m-1}(x) \left(\frac{1}{m-1} - \frac{1}{m} \right) \right|$$

$$\leqslant \frac{M}{m} + \frac{M}{n+1} + M \left[\left(\frac{1}{n+1} - \frac{1}{n+2} \right) + \dots + \left(\frac{1}{m-1} - \frac{1}{m} \right) \right]$$

$$= \frac{2M}{n+1}.$$
(11)

Note that this holds for every $x \in [a, b]$.

• Finally we prove uniform convergence.

Taking $m \to \infty$ in the above estimate, we have (denote the limit function by $\phi(x)$)

$$\forall n \in \mathbb{N}, \quad \forall x \in [a, b], \qquad |\phi(x) - S_n(x)| \leq \frac{2M}{n+1}.$$
 (12)

Now let $\varepsilon > 0$ be arbitrary. Take $N > \frac{2M}{\varepsilon}$. Then for every n > N and every $x \in [a, b]$, we have

$$|\phi(x) - S_n(x)| \leqslant \frac{2M}{n+1} < \frac{2M}{N} < \varepsilon.$$
(13)

Thus $S_n(x) \longrightarrow \phi(x)$ uniformly on [a, b].

Now take any $x \neq 2 \ k \pi$. There is a < x < b such that [a, b] does not contain any $2 \ k \pi$. We see that $\sum_{n=1}^{\infty} \frac{\cos(nx)}{n}$ converges uniformly on [a, b]. Consequently f(x) is differentiable on (a, b) and in particular at x.

5. The function is not differentiable at every $x = 2 k \pi$ $(k \in \mathbb{Z})$.

Proof. Again thanks to periodicity, all we need to prove is f'(0) does not exist. We achieve this through proving

$$\lim_{m \to \infty} \frac{f(1/m) - f(0)}{1/m} = +\infty.$$
 (14)

Clearly f(0) = 0. We have

$$\frac{f(1/m)}{1/m} = \sum_{n=1}^{\infty} \frac{\sin(\frac{n}{m})}{n^2/m} \\ = \sum_{n=1}^{m} \frac{1}{n} \frac{\sin(n/m)}{n/m} + m \sum_{n=m+1}^{\infty} \frac{\sin(n/m)}{n^2}.$$

We denote the two sums by A and B.

 \circ Estimate of A.

It is easy to prove that $\frac{\sin x}{x}$ is decreasing on $(0, \pi/2)$. Thus for each term in A we have

$$\frac{n}{m} \leqslant 1 \Longrightarrow \frac{\sin(n/m)}{n/m} \geqslant \frac{\sin 1}{1}.$$
(15)

Therefore

$$A \geqslant c \sum_{n=1}^{m} \frac{1}{n} \tag{16}$$

where $c := (\sin 1)/1 > 0$ is a fixed constant.

 $\circ \quad \text{Estimate of } B.$ We have

$$B \mid \leq m \sum_{n=m+1}^{\infty} \frac{1}{n^2} < m \sum_{n=m+1}^{\infty} \frac{1}{(n-1)n} = m \sum_{n=m+1}^{\infty} \left[\frac{1}{n-1} - \frac{1}{n} \right] = 1.$$
(17)

Putting the estimates together, we have

$$\frac{f(1/m)}{1/m} > c \sum_{n=1}^{m} \frac{1}{n} - 1 \tag{18}$$

whose limit is obviously ∞ as $m \to \infty$.

Thus we have found a sequence $x_m \longrightarrow 0$ such that

$$\lim_{m \to \infty} \frac{f(x_m) - f(0)}{x_m - 0} = +\infty$$
(19)

and it follows that f cannot be differentiable at 0.

Exercise 1. Prove that $\lim_{x\to 0} \frac{f(x) - f(0)}{x - 0} = +\infty$.

Exercise 2. Let $f(x) := \sum_{n=1}^{\infty} \frac{\cos(nx)}{n^2}$.

a) Find all $x \in \mathbb{R}$ where f is continuous, justify.

b) Find all $x \in \mathbb{R}$ where f is differentiable, justify.