Math 118 Winter 2015 Lecture 30 (Mar. 5, 2015)

- Recall the theory of uniform convergence.

Theorem 1. (Properties of uniformly convergent series) Let $\sum_{n=1}^{\infty} u_{n}(x)$ be a infinite series of functions. Assume. Then
i. If $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly on $[a, b]$ to $f(x)$ and each $u_{n}(x)$ is continuous, then $f(x)$ is continuous on $[a, b]$;
ii. If each $u_{n}(x)$ is differentiable on (a, b) and

1. $\sum_{n=1}^{\infty} u_{n}\left(x_{0}\right)$ converges for some $x_{0} \in(a, b)$;
2. $\sum_{n=1}^{\infty} u_{n}^{\prime}(x)$ converges to $\varphi(x)$ uniformly on (a, b),
then
3. $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly to some $f(x)$ on (a, b),
4. f is differentiable and $f^{\prime}(x)=\varphi(x)$ on (a, b).
iii. If $\sum_{n=1}^{\infty} u_{n}(x)$ converges uniformly to $f(x)$ on $[a, b]$ and each $u_{n}(x)$ is integrable on $[a, b]$, then $f(x)$ is integrable on $[a, b]$ and furthermore

$$
\begin{equation*}
\sum_{n=1}^{\infty} \int_{a}^{b} u_{n}(x) \mathrm{d} x=\int_{a}^{b} f(x) \mathrm{d} x . \tag{1}
\end{equation*}
$$

- An example of trigonometric series.

We discuss the continuity, integrability, and differentiability of the function

$$
\begin{equation*}
f(x):=\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}} . \tag{2}
\end{equation*}
$$

1. The function is defined for all $x \in \mathbb{R}$.

Proof. Let $x \in \mathbb{R}$ be arbitrary. Then we have

$$
\begin{equation*}
\left|\frac{\sin (n x)}{n^{2}}\right| \leqslant \frac{1}{n^{2}} . \tag{3}
\end{equation*}
$$

As $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ converges, by Comparison Theorem we have the convergence of $\sum_{n=1}^{\infty} \frac{\sin (n x)}{n^{2}}$.
2. The function is continuous on \mathbb{R}.

Proof. We prove the convergence is uniform on \mathbb{R}. This follows immediately from (3), the convergence of $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$, and Weierstrass' M-test.

Now since for each fixed $n, \frac{\sin (n x)}{n^{2}}$ is continuous on $\mathbb{R}, f(x)$ is also continuous on \mathbb{R}.
3. The function is Riemann integrable on any compact interval $[a, b] \subset \mathbb{R}$, and furthermore

$$
\begin{equation*}
\int_{a}^{b} f(x) \mathrm{d} x=\sum_{n=1}^{\infty} \int_{a}^{b} \frac{\sin (n x)}{n^{2}} \mathrm{~d} x . \tag{4}
\end{equation*}
$$

Proof. This follows immediately from the uniform convergence we have just proved.
4. The function is differentiable at every $x \neq 2 k \pi(k \in \mathbb{Z})$, and furthermore at such x,

$$
\begin{equation*}
f^{\prime}(x)=\sum_{n=1}^{\infty} \frac{\cos (n x)}{n} . \tag{5}
\end{equation*}
$$

Proof. Since

$$
\begin{equation*}
\left(\frac{\sin (n x)}{n^{2}}\right)^{\prime}=\frac{\cos (n x)}{n} \tag{6}
\end{equation*}
$$

all we need to show is the uniform convergence of

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\cos (n x)}{n} \tag{7}
\end{equation*}
$$

First it is clear that the series does not converge for $x=2 k \pi$ for any $k \in \mathbb{Z}$. Thus in the following we focus on $x \neq 2 k \pi$.

To prove the convergence we apply Abel's re-summation trick:

- First we obtain a good formula for

$$
\begin{equation*}
S_{n}(x):=\cos x+\cdots+\cos (n x) . \tag{8}
\end{equation*}
$$

We have

$$
\begin{align*}
S_{n}(x) & =\frac{\sin (x / 2)}{\sin (x / 2)}[\cos x+\cdots+\cos (n x)] \\
& =\frac{1}{\sin (x / 2)}[\sin (x / 2) \cos x+\cdots+\sin (x / 2) \cos (n x)] \\
& =\frac{1}{2 \sin (x / 2)}\left[\left(\sin \left(x+\frac{x}{2}\right)-\sin \left(x-\frac{x}{2}\right)\right)+\cdots+\left(\sin \left(n x+\frac{x}{2}\right)-\right.\right. \\
& \begin{aligned}
&\left.\left.\sin \left(n x-\frac{x}{2}\right)\right)\right] \\
&=\frac{\sin (n x+x / 2)}{2 \sin (x / 2)}-1 / 2
\end{aligned}
\end{align*}
$$

We see that for any compact interval $[a, b]$ not containing $2 k \pi$, there is $M=M(a, b)$ (that is, depending on a, b-more precisely depending on the distance between a, b and the nearest $2 k \pi)$ such that

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \forall x \in[a, b], \quad\left|S_{n}(x)\right|<M . \tag{10}
\end{equation*}
$$

- Now we apply the re-summation trick. For any $m>n$, we have

$$
\begin{align*}
\left|\frac{\cos ((n+1) x)}{n+1}+\cdots+\frac{\cos (m x)}{m}\right|= & \left\lvert\, \frac{S_{n+1}(x)-S_{n}(x)}{n+1}+\cdots\right. \\
& \left.\frac{S_{m}(x)-S_{m-1}(x)}{m} \right\rvert\, \\
= & \left\lvert\, \frac{S_{m}(x)}{m}-\frac{S_{n}(x)}{n+1}+S_{n+1}(x)\left(\frac{1}{n+1}-\right.\right. \\
& \left.\frac{1}{n+2}\right) \left.+\cdots+S_{m-1}(x)\left(\frac{1}{m-1}-\frac{1}{m}\right) \right\rvert\, \\
\leqslant & \frac{M}{m}+\frac{M}{n+1}+M\left[\left(\frac{1}{n+1}-\frac{1}{n+2}\right)+\cdots+\right. \\
& \left.\left(\frac{1}{m-1}-\frac{1}{m}\right)\right] \tag{11}\\
= & \frac{2 M}{n+1} .
\end{align*}
$$

Note that this holds for every $x \in[a, b]$.

- Finally we prove uniform convergence.

Taking $m \rightarrow \infty$ in the above estimate, we have (denote the limit function by $\phi(x)$)

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad \forall x \in[a, b], \quad\left|\phi(x)-S_{n}(x)\right| \leqslant \frac{2 M}{n+1} \tag{12}
\end{equation*}
$$

Now let $\varepsilon>0$ be arbitrary. Take $N>\frac{2 M}{\varepsilon}$. Then for every $n>N$ and every $x \in[a, b]$, we have

$$
\begin{equation*}
\left|\phi(x)-S_{n}(x)\right| \leqslant \frac{2 M}{n+1}<\frac{2 M}{N}<\varepsilon . \tag{13}
\end{equation*}
$$

Thus $S_{n}(x) \longrightarrow \phi(x)$ uniformly on $[a, b]$.
Now take any $x \neq 2 k \pi$. There is $a<x<b$ such that $[a, b]$ does not contain any $2 k \pi$. We see that $\sum_{n=1}^{\infty} \frac{\cos (n x)}{n}$ converges uniformly on $[a, b]$. Consequently $f(x)$ is differentiable on (a, b) and in particular at x.
5. The function is not differentiable at every $x=2 k \pi(k \in \mathbb{Z})$.

Proof. Again thanks to periodicity, all we need to prove is $f^{\prime}(0)$ does not exist. We achieve this through proving

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{f(1 / m)-f(0)}{1 / m}=+\infty \tag{14}
\end{equation*}
$$

Clearly $f(0)=0$. We have

$$
\begin{aligned}
\frac{f(1 / m)}{1 / m} & =\sum_{n=1}^{\infty} \frac{\sin \left(\frac{n}{m}\right)}{n^{2} / m} \\
& =\sum_{n=1}^{m=1} \frac{1}{n} \frac{\sin (n / m)}{n / m}+m \sum_{n=m+1}^{\infty} \frac{\sin (n / m)}{n^{2}} .
\end{aligned}
$$

We denote the two sums by A and B.

- Estimate of A.

It is easy to prove that $\frac{\sin x}{x}$ is decreasing on $(0, \pi / 2)$. Thus for each term in A we have

$$
\begin{equation*}
\frac{n}{m} \leqslant 1 \Longrightarrow \frac{\sin (n / m)}{n / m} \geqslant \frac{\sin 1}{1} \tag{15}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
A \geqslant c \sum_{n=1}^{m} \frac{1}{n} \tag{16}
\end{equation*}
$$

where $c:=(\sin 1) / 1>0$ is a fixed constant.

- Estimate of B.

We have

$$
\begin{equation*}
|B| \leqslant m \sum_{n=m+1}^{\infty} \frac{1}{n^{2}}<m \sum_{n=m+1}^{\infty} \frac{1}{(n-1) n}=m \sum_{n=m+1}^{\infty}\left[\frac{1}{n-1}-\frac{1}{n}\right]=1 \tag{17}
\end{equation*}
$$

Putting the estimates together, we have

$$
\begin{equation*}
\frac{f(1 / m)}{1 / m}>c \sum_{n=1}^{m} \frac{1}{n}-1 \tag{18}
\end{equation*}
$$

whose limit is obviously ∞ as $m \rightarrow \infty$.
Thus we have found a sequence $x_{m} \longrightarrow 0$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{f\left(x_{m}\right)-f(0)}{x_{m}-0}=+\infty \tag{19}
\end{equation*}
$$

and it follows that f cannot be differentiable at 0 .
Exercise 1. Prove that $\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=+\infty$.
Exercise 2. Let $f(x):=\sum_{n=1}^{\infty} \frac{\cos (n x)}{n^{2}}$.
a) Find all $x \in \mathbb{R}$ where f is continuous, justify.
b) Find all $x \in \mathbb{R}$ where f is differentiable, justify.

