MATH 118 WINTER 2015 HOMEWORK 6 SOLUTIONS

DUE THURSDAY MAR. 5 3PM IN ASSIGNMENT BOX

QUESTION 1. (5 PTS) Calculate the following.

- a) (2 PTS) $\lim_{n\to\infty} \frac{1}{1+x^n}$ on $\{x | x \ge 0\};$
- b) (3 PTS) $\lim_{n\to\infty} e^{-nx} (1+x^2)^n$ on $\{x \mid x \ge 0\}$.

QUESTION 2. (5 PTS) Let $f_n(x)$ converge to f(x) uniformly on [a, b]. Prove that $\lim_{n\to\infty} f_n(x) = f(x)$ on [a, b].

QUESTION 3. (5 PTS)

- a) (2 PTS) Prove that $\sum_{n=1}^{\infty} e^{-nx} \sin(n^2 x)$ converges on $[0,\infty)$.
- b) (3 PTS) Is the convergence uniform? Justify your claim.

QUESTION 4. (5 PTS) Let $f_n(x)$, $f(x): [0, \infty) \mapsto \mathbb{R}$. Further assume $\lim_{x\to\infty} f_n(x) = 0$ for every $n \in \mathbb{N}$ and $\lim_{n\to\infty} f_n(x) = f(x)$ on $[0, \infty)$.

- a) (2 PTS) Does it follow that $\lim_{x\to\infty} f(x) = 0$? Justify your claim.
- b) (3 PTS) If instead of convergence we assume $f_n(x)$ converges to f(x) uniformly on $[0, \infty)$, does it follow that $\lim_{x\to\infty} f(x) = 0$? Justify your claim.