MATH 118 WINTER 2015 LECTURE 26 (Feb. 26, 2015)

• An example.

Example 1. Consider $\sum_{n=0}^{\infty} x^n$ on (0,1).

- a) Does it converge?
- b) If it does, is the convergence uniform?

Solution.

a) Yes. Let $x \in (0, 1)$ be arbitrary.

Exercise 1. Prove that $1 + x + \dots + x^n = \frac{1 - x^{n+1}}{1 - x}$. We have $\lim_{n \to \infty} (1 + x + \dots + x^n) = \lim_{n \to \infty} \frac{1 - x^{n+1}}{1 - x} = \frac{1}{1 - x}$ which is finite when $x \in (0, 1)$. Therefore $\sum_{n=0}^{\infty} x^n$ converges on (0, 1) and the sum is $\frac{1}{1 - x}$.

b) No. Let $N \in \mathbb{N}$ be arbitrary. Set n = 2 N > N and $x_n := 1 - \frac{1}{n+2}$. Then we have $0 < 1 + x_n + \dots + x_n^n < n+1$ and $\frac{1}{1-x_n} = n+2$.

$$\left| (1+x+\dots+x^n) - \frac{1}{1-x_n} \right| \ge 1.$$

$$\tag{1}$$

- Checking uniform convergence.
 - \circ For $f_n(x) \longrightarrow f(x)$.

THEOREM 2. (CAUCHY CRITERION) $f_n(x)$ converges uniformly to f(x) on [a, b] if and only if

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall m > n > N, \forall x \in [a, b], \qquad |f_m(x) - f_n(x)| < \varepsilon.$$
(2)

Exercise 2. Prove Theorem 2.

Exercise 3. Prove that $f_n(x)$ converges uniformly to f(x) on [a, b] if and only if

$$\forall \varepsilon > 0, \ \exists N \in \mathbb{N}, \ \forall m > n > N, \qquad \sup_{x \in [a,b]} |f_m(x) - f_n(x)| < \varepsilon.$$
(3)

THEOREM 3. $f_n(x)$ converges uniformly to f(x) on [a,b] if and only if $\lim_{n\to\infty} M_n = 0$ where $M_n := \sup_{x \in [a,b]} |f_n(x) - f(x)|$.

Proof. We prove "if" and then "only if".

- If. Assume $\lim_{n\to\infty} M_n = 0$ where $M_n := \sup_{x\in[a,b]} |f_n(x) - f(x)|$. Let $\varepsilon > 0$ be arbitrary. As $\lim_{n\to\infty} M_n = 0$ there is $N_1 \in \mathbb{N}$ such that $|M_n| < \varepsilon$ for all $n > N_1$.

Take $N = N_1$. Then for every n > N, we have

$$\forall x \in [a, b], \qquad |f_n(x) - f(x)| \leq M_n < \varepsilon.$$
(4)

- Only if. Assume $f_n(x)$ converges uniformly to f(x) on [a, b].
 - Let $\varepsilon > 0$ be arbitrary. As $f_n(x)$ converges uniformly to f(x) on [a, b], there is $N_1 \in \mathbb{N}$ such that for all $n > N_1$,

$$\forall x \in [a, b], \qquad |f_n(x) - f(x)| < \frac{\varepsilon}{2}.$$
(5)

Now set $N = N_1$. For every n > N, we have $0 \leq M_n = \sup_{x \in [a,b]} |f_n(x) - f(x)| \leq \frac{\varepsilon}{2} < \varepsilon$. Thus $\lim_{n \to \infty} M_n = 0$.

Example 4. Prove that the convergence is uniform on $(0, \infty)$ for $\lim_{n\to\infty} x e^{-nx} = 0$.

Proof. We calculate

$$(x e^{-nx})' = (1 - nx) e^{-nx}$$
(6)

which is positive for x < 1/n and negative for x > 1/n. Therefore

$$\sup_{x \in (0,\infty)} x e^{-nx} = \frac{1}{n} e^{-n\left(\frac{1}{n}\right)} = \frac{1}{n e}.$$
(7)

As $\lim_{n\to\infty} \frac{1}{ne} = 0$ the convergence of $x e^{-nx}$ to 0 is uniform.

• For $\sum_{n=1}^{\infty} u_n(x)$.

Exercise 4. Prove that $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b] if and only if

$$\forall \varepsilon > 0 \; \exists N \in \mathbb{N} \; \forall m > n > N, \forall x \in [a, b], \qquad \left| \sum_{k=n+1}^{m} u_k(x) \right| < \varepsilon.$$
(8)

PROPOSITION 5. If $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b], then $u_n(x) \to 0$ uniformly on [a, b].

Proof. Let $\varepsilon > 0$ be arbitrary. As $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly there is $N_1 \in \mathbb{N}$ such that for all $m > n > N_1$,

$$\forall x \in [a, b], \qquad \left| \sum_{k=n+1}^{m} u_k(x) \right| < \varepsilon.$$
(9)

In particular, setting m = n + 1 we have

$$\forall x \in [a, b], \qquad |u_{n+1}(x)| < \varepsilon.$$
(10)

Now set $N = N_1 + 1$. For every n > N, we have $n - 1 > N_1$ and therefore

$$\forall x \in [a, b], \qquad |u_n(x)| = |u_{n-1+1}(x)| < \varepsilon.$$

$$(11)$$

Thus ends the proof.

Remark 6. In practice we often apply the contrapositive: If $u_n(x)$ does not converge to 0 uniformly on [a, b], then $\sum_{n=1}^{\infty} u_n(x)$ does not converge uniformly.

Example 7. $\sum_{n=1}^{\infty} n x e^{-nx}$ does not converge uniformly on $(0, \infty)$.

Proof. Let $u_n(x) := n x e^{-nx}$. Then we have

$$M_n := \sup_{x \in (0,\infty)} |u_n(x) - 0| \ge \left| u_n\left(\frac{1}{n}\right) - 0 \right| = e^{-1}.$$
 (12)

Therefore $\lim_{n\to\infty} M_n = 0$ does not hold, which means $u_n(x)$ does not uniformly converge to 0 on $(0,\infty)$, consequently $\sum_{n=1}^{\infty} n x e^{-nx}$ does not converge uniformly on $(0,\infty)$.

Exercise 5. Does $\sum_{n=1}^{\infty} n x e^{-nx}$ converge on $(0, \infty)$?

THEOREM 8. (WEIERSTRASS) If there is $\{a_n\}$ such that

- *i.* $\forall x \in [a, b], \forall n \in \mathbb{N}, |u_n(x)| \leq a_n;$
- ii. $\sum_{n=1}^{\infty} a_n$ converges,

then $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b].

Proof. Let $\varepsilon > 0$ be arbitrary. As $\sum_{n=1}^{\infty} a_n$ converges, there is $N_1 \in \mathbb{N}$ such that for all $m > n > N_1$, $\left|\sum_{k=n+1}^{m} a_n\right| < \varepsilon$. Now take $N = N_1$. By assumption

$$\forall x \in [a, b], \qquad \left| \sum_{k=n+1}^{m} u_k(x) \right| \leq \sum_{k=n+1}^{m} |u_k(x)| \leq \sum_{k=n+1}^{m} a_k < \varepsilon.$$
(13)
ads the proof.

Thus ends the proof.

Exercise 6. Find $u_n(x)$ such that $\sum_{n=1}^{\infty} u_n(x)$ converges uniformly on [a, b] but there is no $\{a_n\}$ satisfying $\forall x \in [a, b], \forall n \in \mathbb{N}, |u_n(x)| \leq a_n$ and $\sum_{n=1}^{\infty} a_n$ converges.

Example 9. Consider $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$. We have

$$\forall x \in \mathbb{R}, \qquad \left|\frac{\sin n x}{n^2}\right| \leqslant \frac{1}{n^2}.$$
(14)

As $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges, $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ converges uniformly on \mathbb{R} .