Math 118 Winter 2015 Lecture 25 (Feb. 25, 2015)

- One more example.

Example 1. Study $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$.

- First notice that $\left|\frac{\sin n x}{n}\right| \leqslant \frac{1}{n}$ does not lead to any conclusion as $\sum_{n=1}^{\infty} \frac{1}{n}=+\infty$.

Remark. Note that for most x, there is no $p>1$ such that $\left|\frac{\sin n x}{n}\right| \leqslant \frac{1}{n^{p}}$ holds for all $n \in \mathbb{N}$ as $\limsup _{n \rightarrow \infty}|\sin (n x)|=1$.

- To be able to deal with $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$, we need the technique of "Abel's resummation":

$$
\begin{align*}
\sum_{k=1}^{n} a_{k} b_{k} & =A_{1} b_{1}+\left(A_{2}-A_{1}\right) b_{2}+\cdots+\left(A_{n}-A_{n-1}\right) b_{n} \\
& =A_{1}\left(b_{1}-b_{2}\right)+A_{2}\left(b_{2}-b_{3}\right)+\cdots+A_{n-1}\left(b_{n-1}-b_{n}\right)+A_{n} b_{n} \\
& =\sum_{k=1}^{n-1} A_{k}\left(b_{k}-b_{k+1}\right)+A_{n} b_{n} \tag{1}
\end{align*}
$$

where

$$
\begin{equation*}
A_{k}:=a_{1}+a_{2}+\cdots+a_{k} . \tag{2}
\end{equation*}
$$

- Now let $x \in \mathbb{R}$ be arbitrary. Set $a_{n}:=\sin n x$ and $b_{n}=\frac{1}{n}$. We have following (1)

$$
\begin{equation*}
S_{n}:=\sum_{k=1}^{n} \frac{\sin k x}{k}=\sum_{k=1}^{n-1} \frac{A_{k}}{k(k+1)}+\frac{A_{n}}{n} . \tag{3}
\end{equation*}
$$

We will try to prove using (3) that $\left\{S_{n}\right\}$ is Cauchy.

- First notice that when $x=2 m \pi$ for some $m \in \mathbb{Z}, S_{n}=0$ for all n and is therefore Cauchy.
- Next we claim that, if there is $M>0$ such that $\left|A_{n}\right| \leqslant M$ for all $n \in \mathbb{N}$, then $S_{n}=\sum_{k=1}^{n-1} \frac{A_{k}}{k(k+1)}+\frac{A_{n}}{n}$ is Cauchy.

Proof. Let $\varepsilon>0$ be arbitrary. Set $N>\frac{2 M}{\varepsilon}$. Then for every $m>n>N$, we have

$$
\begin{align*}
\left|S_{m}-S_{n}\right| & =\left|\sum_{k=n}^{m-1} \frac{A_{k}}{k(k+1)}+\frac{A_{m}}{m}-\frac{A_{n}}{n}\right| \\
& \leqslant \sum_{k=n}^{m-1} \frac{\left|A_{k}\right|}{k(k+1)}+\frac{\left|A_{m}\right|}{m}+\frac{\left|A_{n}\right|}{n} \\
& \leqslant M\left[\sum_{k=n}^{m-1}\left(\frac{1}{k}-\frac{1}{k+1}\right)+\frac{1}{m}+\frac{1}{n}\right] \\
& =\frac{2 M}{n}<\frac{2 M}{N}<\varepsilon . \tag{4}
\end{align*}
$$

Thus ends the proof.

- Finally we prove that, for any $x \neq 2 m \pi$, there is $M>0$ such that for all $n \in \mathbb{N}$, $\left|A_{n}\right|=|\sin x+\cdots+\sin n x| \leqslant M$.

We have

$$
\begin{align*}
\left(\sin \frac{x}{2}\right) A_{n}= & \sin x \sin \frac{x}{2}+\sin 2 x \sin \frac{x}{2}+\cdots+\sin n x \sin \frac{x}{2} \\
= & \frac{1}{2}\left[\cos \frac{x}{2}-\cos \frac{3 x}{2}+\cos \frac{3 x}{2}-\cos \frac{5 x}{2}+\cdots+\cos \left(n-\frac{1}{2}\right) x-\right. \\
& \left.\cos \left(n+\frac{1}{2}\right) x\right] \\
= & \frac{1}{2}\left[\cos \frac{x}{2}-\cos \left(n+\frac{1}{2}\right) x\right] . \tag{5}
\end{align*}
$$

This gives

$$
\begin{equation*}
\forall n \in \mathbb{N}, \quad\left|A_{n}\right| \leqslant \frac{1}{\left|\sin \frac{x}{2}\right|}=: M . \tag{6}
\end{equation*}
$$

Note that when $x \neq 2 m \pi, \sin \frac{x}{2} \neq 0$ so M is indeed a finite number.

- Uniform convergence.
- Motivation.

Let $f_{n}(x)$ converge to $f(x)$ on $[a, b]$. Is it possible to draw conclusion about continuity, differentiability, integrability of f from those of f_{n} ?

Example 2. Consider the following.

1. For every $n \in \mathbb{N}, f_{n}(x)=x^{n}$ is continuous on [0,1]. But $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)=$ $\left\{\begin{array}{ll}1 & x=1 \\ 0 & x \in[0,1)\end{array}\right.$ is not continuous on $[0,1]$.
2. For every $n \in \mathbb{N}, f_{n}(x)=n x\left(1-x^{2}\right)^{n}$ is integrable on $[0,1] . f(x)=$ $\lim _{n \rightarrow \infty} f_{n}(x)=0$ is also integrable on $[0,1]$. But

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=\frac{1}{2} \neq 0=\int_{0}^{1} f(x) \mathrm{d} x . \tag{7}
\end{equation*}
$$

Exercise 1. Prove $\lim _{n \rightarrow \infty} \int_{0}^{1} f_{n}(x) \mathrm{d} x=\frac{1}{2}$.
3. For every $n \in \mathbb{N}, f_{n}(x)=\lim _{m \rightarrow \infty}(\cos (n!\pi x))^{2 m}=\left\{\begin{array}{ll}1 & n!\pi x \in \mathbb{Z} \\ 0 & \text { otherwise }\end{array}\right.$ is integrable on $[0,1]$. But $\lim _{n \rightarrow \infty} f_{n}(x)=\left\{\begin{array}{ll}1 & x \in \mathbb{Q} \\ 0 & x \notin \mathbb{Q}\end{array}\right.$ is not Riemann integrable on $[0,1]$.

Exercise 2. Prove $\lim _{m \rightarrow \infty}(\cos (n!\pi x))^{2 m}=\left\{\begin{array}{ll}1 & n!\pi x \in \mathbb{Z} \\ 0 & \text { otherwise }\end{array}\right.$.

- To be able to draw conclusion about continuity, differentiability, integrability of f from those of f_{n}, we need a stronger kind of convergence.
- Uniform convergence of function sequences.

Definition 3. (Uniform convergence) We say $f_{n}(x)$ converge to $f(x)$ uniformly on $[a, b]$ if and only if

$$
\begin{equation*}
\forall \varepsilon>0, \exists N \in \mathbb{N}, \forall x \in[a, b], \forall n>N, \quad\left|f_{n}(x)-f(x)\right|<\varepsilon . \tag{8}
\end{equation*}
$$

Example 4. Prove that $f_{n}(x)=\frac{x}{1+n^{2} x}$ converge to 0 uniformly on $(0, \infty)$.

Proof. Let $\varepsilon>0$ be arbitrary. Set $N>\varepsilon^{-1 / 2}$. Then for every $x \in(0, \infty)$ and every $n>N$ we have

$$
\begin{equation*}
\left|f_{n}(x)-0\right|=\frac{x}{1+n^{2} x}<\frac{1}{n^{2}}<\frac{1}{N^{2}}<\varepsilon . \tag{9}
\end{equation*}
$$

Thus ends the proof.
Example 5. Prove that $f_{n}(x)=x^{n}$ does not uniformly converge to 0 on $(0,1)$.
Proof. First we write down the working negation: f_{n} does not uniformly converge to f on $[a, b]$ if and only if

$$
\begin{equation*}
\exists \varepsilon_{0}>0, \forall N \in \mathbb{N}, \exists x \in[a, b], \exists n>N, \quad\left|f_{n}(x)-f(x)\right| \geqslant \varepsilon_{0} \tag{10}
\end{equation*}
$$

Now let $\varepsilon_{0}=\frac{1}{2}$. Let $N \in \mathbb{N}$ be arbitrary. Now set $n=2 N>N, x=\left(\frac{1}{2}\right)^{1 / 2 N} \in(0,1)$, we have

$$
\begin{equation*}
\left|x^{n}-0\right|=\frac{1}{2} \geqslant \varepsilon_{0} . \tag{11}
\end{equation*}
$$

Thus ends the proof.

