
Math 118 Winter 2015 Lecture 23 (Feb. 13, 2015)

� Tests.

Theorem 1. (Dirichlet) Let f ; g: [0;1) 7!R be integrable on [0; d] for every d>0. Assume

i. 9M > 0;8d2R,

�����
Z
0

d

f(t) dt

�����6M;

ii. g is monotone with limx!1g(x)= 0.

Then f g is improperly integrable on (0;1).

The proof of Theorem 1 is technical and we do not present it here. Instead we prove the
following weaker version.

Theorem 2. Let f ; g: [0;1) 7!R be continuous on [0; d] for every d> 0. Assume

i. 9M > 0;8d2R,

�����
Z
0

d

f(t) dt

�����6M;

ii. g is monotone with limx!1g(x)= 0;

iii. g is di�erentiable with g 0 integrable on [0; d] for every d> 0.

Then f g is improperly integrable on (0;1).

Proof. By assumption f g is integrable on [0; d] for every d>0. Denote F (x) :=
Z
0

x

f(t) dt.

Then by FTC2 we have F 0(x)= f(x) and by assumption jF (x)j6M for all x> 0.
Now we calculateZ

0

d

f(x) g(x) dx =
Z
0

d

g(x) dF (x)

= g(d)F (d)¡ g(0)F (0)¡
Z
0

d

F (x) g 0(x) dx: (1)

Exercise 1. Prove that limd!1g(d)F (d)= 0. (Hint:1 )

Thus all we need to show is that A(d) :=
Z
0

d

F (x) g 0(x) dx is Cauchy. This follows from

the calculation

jA(d2)¡A(d1)j =

�����
Z
d1

d2

F (x) g 0(x) dx

�����
6 M

Z
d1

d2

jg 0(x)j dx

= M

�����
Z
d1

d2

g 0(x) dx

����� (2)

= M jg(d2)¡ g(d1)j: (3)

Exercise 2. Explain why (2) holds and write down the detailed proof of the claim: A(d) is Cauchy.

1. Squeeze.



Therefore lim
d!1

Z
0

d

f(x) g(x) dx exists and is �nite and the conclusion follows. �

Theorem 3. (Abel) Let f ; g: [0;1) 7!R be integrable on [0; d] for every d> 0. Assume

i. f(x) is improperly integrable on (0;1);

ii. g is monotone and bounded.

Then f g is improperly integrable on (0;1).

Proof. As f(x) is improperly integrable on (0;1), there is A2R such that

lim
d!1

Z
0

d

f(x) dx=A: (4)

Thus there is d0 > 0 such that for all d > d0,

�����
Z
0

d

f(x) dx ¡ A

����� < 1. Now since f(x) is

integrable on [0; d0], there is K > 0 such that jf(x)j 6 K for all x 2 [0; d0]. Now taking

M :=maxfKd0; jAj+1g we easily see that

�����
Z
0

d

f(x) dx

�����6M for all d2 (0;1).

Since g is monotone and bounded, there is p2R such that limx!1g(x)= p.
Now apply Theorem 1 to f(x) and g(x) ¡ p, we see that f(x) [g(x) ¡ p] is improperly

integrable on (0;1).
Finally, as f(x) is improperly integrable on (0; 1) so is p f(x) and consequently

f(x) g(x)= f(x) (g(x)¡ p)+ p f(x) is improperly integrable on (0;1). �

Exercise 3. Formulate and prove Theorem 2 and Theorem 3 for the general interval (a; b) instead of
(0;1).

Example 4. Prove that sinx

1+x1/2
is improperly integrable on (0;1).

Proof. We take f(x) = sin x and g(x) = 1

1+x1/2
. Clearly the conditions of Theorem 1 is

satis�ed. �

� Calculation of
Z
0

1 sinx
x

dx.
Set

g(y) :=
Z
0

1
e¡xy

sinx
x

dx: (5)

Exercise 4. Prove that g(y) is de�ned for all y > 0.

We calculate

g 0(y)=
Z
0

1
(¡x) e¡xy sinx

x
dx=¡

Z
0

1
e¡xy sinx dx=¡ 1

1+ y2
: (6)

Problem 1. Justify (6).

This gives

g(y)=C ¡ arctan y: (7)

Problem 2. Prove

lim
y!0+

g(y)=

Z
0

1 sin x
x

dx:



From (7) we have limy!0+g(y)=C. Therefore all we need is the value of C.

Exercise 5. Prove that

lim
y!1

Z
0

1
e¡xy

sin x
x

dx=0: (8)

Taking y!1 in (7) we see that C = �

2
. Consequently

Z
0

1 sinx
x

dx= �
2
.

� Relation to In�nite Series.
Consider the �harmonic numbers� Hn := 1+ 1

2
+ ���+ 1

n
. From

1
2
=

Z
1

2 dx
2
<

Z
1

2 dx
x

<

Z
1

2 dx
1
=1 (9)

1
3
=

Z
2

3 dx
3
<

Z
2

3 dx
x

<

Z
2

3 dx
2
= 1
2

(10)

��� ��� ���
we see that

Hn¡ 1<
Z
1

n dx
x
<Hn¡1<Hn: (11)

Exercise 6. Use (11) to prove the divergence of
P

n=1

1 1

n
.

Exercise 7. Use similar idea to study the convergence/divergence of
X
n=2

1
1

n (ln n)p
, p2R.

Rearranging the terms we have

n :=Hn¡ lnn2 (0; 1): (12)

As

n+1¡ n=
Z
n

n+1
�

1
n+1

¡ 1
x

�
dx< 0; (13)

n is decreasing and therefore there is  2 (0; 1) such that limn!1n = . This number is
called the �Euler-Mascheroni� constant, about which very little is known. We don't even know
whether it is rational or not.
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