MATH 118 WINTER 2015 LECTURE 23 (FeB. 13, 2015)
e Tests.

THEOREM 1. (DIRICHLET) Let f, g:[0,00) — R be integrable on [0,d] for every d>0. Assume

/Od £t dt

it. g is monotone with limy_.ocg(x) =0.

i. AM>0,VdeR, < M;

Then fg is improperly integrable on (0, 00).

The proof of Theorem 1 is technical and we do not present it here. Instead we prove the
following weaker version.

THEOREM 2. Let f, g:[0,00)— R be continuous on [0,d] for every d>0. Assume

/Od £t dt

it. g is monotone with lim, . g(x)=0;

i. AM>0,YdeR, < M;

iii. g is differentiable with g’ integrable on [0,d] for every d > 0.
Then fg is improperly integrable on (0,00).

T

Proof. By assumption fg is integrable on [0, d] for every d > 0. Denote F(z):= / f(t)dt.

0
Then by FTC2 we have F'(xz) = f(x) and by assumption |F(x)| < M for all 2 > 0.
Now we calculate

d d
| r@a@as = [ g@are)
0 0 4
= g(d)F(d)—g(O)F(O)—/O F(z) g'(z) dz. (1)
Exercise 1. Prove that limg . g(d) F(d)=0. (Hint:! )

d
Thus all we need to show is that A(d) ::/ F(z) g'(x) dz is Cauchy. This follows from
0

the calculation

da
|A(ds) — A(dy)| = [1 F(z) ¢/(z) dx
do
< M [ Ig@lda
da
= MA g'(z)dx (2)
= M |g(d2) — g(dy1)]. (3)

Exercise 2. Explain why (2) holds and write down the detailed proof of the claim: A(d) is Cauchy.

1. Squeeze.



d
Therefore dlim f(x) g(x) dx exists and is finite and the conclusion follows. O
—00 J0

THEOREM 3. (ABEL) Let f, g:[0,00) — R be integrable on [0,d] for every d>0. Assume
i. f(z) is improperly integrable on (0,00);
1. g 1s monotone and bounded.

Then fg is improperly integrable on (0,00).

Proof. As f(z) is improperly integrable on (0, c0), there is A € R such that

d
lim f(z)dz=A. (4)

d
Thus there is dy > 0 such that for all d > dy, ‘/ flx) dz — A' < 1. Now since f(z) is
0

integrable on [0, do], there is K > 0 such that |f(z)| < K for all = € [0, dp]. Now taking

/Od f(x)dz

Since g is monotone and bounded, there is p € R such that lim, _.g(z) = p.

Now apply Theorem 1 to f(z) and g(z) — p, we see that f(x) [g(x) — p] is improperly
integrable on (0, 00).

Finally, as f(z) is improperly integrable on (0, oco) so is p f(x) and consequently
f(z) g(x)= f(z) (9(x) — p) + p f(x) is improperly integrable on (0, c0). O

M :=max{K dy,|A|+ 1} we easily see that <M for all d € (0,00).

Exercise 3. Formulate and prove Theorem 2 and Theorem 3 for the general interval (a, b) instead of
(0, 00).

Example 4. Prove that % is improperly integrable on (0, c0).
xX

Proof. We take f(x) =sin z and g(z) = ;1/2 Clearly the conditions of Theorem 1 is

1
satisfied. + 0
0o .
e C(Calculation of / ST .
0 X
Set
> sinx
o(v):= [ eIt aa, (5)
Exercise 4. Prove that g(y) is defined for all y > 0.
We calculate
o : o
g’(y)—/o (—x) e‘wygdx——/o e sinxdx——l_:yT (6)
Problem 1. Justify (6).
This gives
g(y)=C — arctany. (7)

Problem 2. Prove

lim g(y) :/ ST g
0

y—0+ X



From (7) we have limy_o+¢(y) = C. Therefore all we need is the value of C.

Exercise 5. Prove that
o .
ooy SIBT

lim dz=0.
y—oo Jo
. . r * sinx
Taking y— oo in (7) we see that C'= - Consequently
0

Relation to Infinite Series.
Consider the “harmonic numbers” H,, :=1+ % + - % From

1 2 1 2 11

1
2
1 3 da 3 da 3 da

3= 3< = < ==

1
2 3 2 X 2 2 2

we see that

n
Hn—1</ %<Hn_1<Hn.
1

oo 1

Exercise 6. Use (11) to prove the divergence of 7~ | —.

Exercise 7. Use similar idea to study the convergence/divergence of Z
n

-
(Inn)

n=2
Rearranging the terms we have

Yn:=Hp,—Inne(0,1).

n+1 1 1
7n+1_7n_/ [ ——:|d33<0,
n T

n+1

dx =

T
5

p,pG]R.

(11)

(12)

(13)

~n, is decreasing and therefore there is v € (0, 1) such that lim, 7y, = 7. This number is
called the “Fuler-Mascheroni” constant, about which very little is known. We don’t even know

whether it is rational or not.
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