MATH 118 WINTER 2015 LECTURE 23 (Feb. 13, 2015)

• Tests.

THEOREM 1. (DIRICHLET) Let $f, g: [0, \infty) \mapsto \mathbb{R}$ be integrable on [0, d] for every d > 0. Assume

i.
$$\exists M > 0, \forall d \in \mathbb{R}, \left| \int_0^d f(t) \, \mathrm{d}t \right| \leq M;$$

ii. g is monotone with $\lim_{x\to\infty} g(x) = 0$.

Then f g is improperly integrable on $(0,\infty)$.

The proof of Theorem 1 is technical and we do not present it here. Instead we prove the following weaker version.

THEOREM 2. Let $f, g: [0, \infty) \mapsto \mathbb{R}$ be continuous on [0, d] for every d > 0. Assume

i.
$$\exists M > 0, \forall d \in \mathbb{R}, \left| \int_0^d f(t) \, \mathrm{d}t \right| \leq M;$$

ii. g is monotone with $\lim_{x\to\infty} g(x) = 0$;

iii. g is differentiable with g' integrable on [0, d] for every d > 0.

Then fg is improperly integrable on $(0,\infty)$.

Proof. By assumption fg is integrable on [0, d] for every d > 0. Denote $F(x) := \int_0^x f(t) dt$. Then by FTC2 we have F'(x) = f(x) and by assumption $|F(x)| \leq M$ for all x > 0.

Now we calculate

$$\int_{0}^{d} f(x) g(x) dx = \int_{0}^{d} g(x) dF(x)$$

= $g(d) F(d) - g(0) F(0) - \int_{0}^{d} F(x) g'(x) dx.$ (1)

Exercise 1. Prove that $\lim_{d\to\infty} g(d) F(d) = 0$. (Hint:¹)

Thus all we need to show is that $A(d) := \int_0^d F(x) g'(x) dx$ is Cauchy. This follows from the calculation

$$|A(d_{2}) - A(d_{1})| = \left| \int_{d_{1}}^{d_{2}} F(x) g'(x) dx \right|$$

$$\leq M \int_{d_{1}}^{d_{2}} |g'(x)| dx$$

$$= M \left| \int_{d_{1}}^{d_{2}} g'(x) dx \right|$$

$$= M |g(d_{2}) - g(d_{1})|.$$
(2)

Exercise 2. Explain why (2) holds and write down the detailed proof of the claim: A(d) is Cauchy.

^{1.} Squeeze.

Therefore $\lim_{d \to \infty} \int_0^d f(x) g(x) dx$ exists and is finite and the conclusion follows. \Box

THEOREM 3. (ABEL) Let $f, g: [0, \infty) \mapsto \mathbb{R}$ be integrable on [0, d] for every d > 0. Assume

- *i.* f(x) is improperly integrable on $(0,\infty)$;
- ii. g is monotone and bounded.
- Then fg is improperly integrable on $(0,\infty)$.

Proof. As f(x) is improperly integrable on $(0, \infty)$, there is $A \in \mathbb{R}$ such that

$$\lim_{d \to \infty} \int_0^d f(x) \, \mathrm{d}x = A. \tag{4}$$

Thus there is $d_0 > 0$ such that for all $d > d_0$, $\left| \int_0^d f(x) \, \mathrm{d}x - A \right| < 1$. Now since f(x) is integrable on $[0, d_0]$, there is K > 0 such that $|f(x)| \leq K$ for all $x \in [0, d_0]$. Now taking $M := \max\{K d_0, |A|+1\}$ we easily see that $\left| \int_0^d f(x) \, \mathrm{d}x \right| \leq M$ for all $d \in (0, \infty)$.

Since g is monotone and bounded, there is $p \in \mathbb{R}$ such that $\lim_{x\to\infty} g(x) = p$.

Now apply Theorem 1 to f(x) and g(x) - p, we see that f(x) [g(x) - p] is improperly integrable on $(0, \infty)$.

Finally, as f(x) is improperly integrable on $(0, \infty)$ so is p f(x) and consequently f(x) g(x) = f(x) (g(x) - p) + p f(x) is improperly integrable on $(0, \infty)$.

Exercise 3. Formulate and prove Theorem 2 and Theorem 3 for the general interval (a, b) instead of $(0, \infty)$.

Example 4. Prove that $\frac{\sin x}{1+x^{1/2}}$ is improperly integrable on $(0,\infty)$.

Proof. We take $f(x) = \sin x$ and $g(x) = \frac{1}{1+x^{1/2}}$. Clearly the conditions of Theorem 1 is satisfied.

• Calculation of $\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x.$ Set

$$g(y) := \int_0^\infty e^{-xy} \frac{\sin x}{x} \,\mathrm{d}x. \tag{5}$$

Exercise 4. Prove that g(y) is defined for all y > 0.

We calculate

$$g'(y) = \int_0^\infty (-x) e^{-xy} \frac{\sin x}{x} \, \mathrm{d}x = -\int_0^\infty e^{-xy} \sin x \, \mathrm{d}x = -\frac{1}{1+y^2}.$$
 (6)

Problem 1. Justify (6).

This gives

$$g(y) = C - \arctan y. \tag{7}$$

Problem 2. Prove

$$\lim_{y \to 0+} g(y) = \int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x.$$

From (7) we have $\lim_{y\to 0+} g(y) = C$. Therefore all we need is the value of C.

Exercise 5. Prove that

$$\lim_{y \to \infty} \int_0^\infty e^{-xy} \frac{\sin x}{x} \, \mathrm{d}x = 0. \tag{8}$$

Taking $y \to \infty$ in (7) we see that $C = \frac{\pi}{2}$. Consequently $\int_0^\infty \frac{\sin x}{x} \, \mathrm{d}x = \frac{\pi}{2}$.

• Relation to Infinite Series.

Consider the "harmonic numbers" $H_n := 1 + \frac{1}{2} + \dots + \frac{1}{n}$. From

$$\frac{1}{2} = \int_{1}^{2} \frac{\mathrm{d}x}{2} < \int_{1}^{2} \frac{\mathrm{d}x}{x} < \int_{1}^{2} \frac{\mathrm{d}x}{1} = 1$$
(9)

$$\frac{1}{3} = \int_{2}^{3} \frac{\mathrm{d}x}{3} < \int_{2}^{3} \frac{\mathrm{d}x}{x} < \int_{2}^{3} \frac{\mathrm{d}x}{2} = \frac{1}{2}$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$
(10)

we see that

$$H_n - 1 < \int_1^n \frac{\mathrm{d}x}{x} < H_{n-1} < H_n.$$
(11)

Exercise 6. Use (11) to prove the divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$.

Exercise 7. Use similar idea to study the convergence/divergence of $\sum_{n=2}^{\infty} \frac{1}{n (\ln n)^p}$, $p \in \mathbb{R}$.

Rearranging the terms we have

$$\gamma_n := H_n - \ln n \in (0, 1).$$
(12)

As

$$\gamma_{n+1} - \gamma_n = \int_n^{n+1} \left[\frac{1}{n+1} - \frac{1}{x} \right] \mathrm{d}x < 0, \tag{13}$$

 γ_n is decreasing and therefore there is $\gamma \in (0, 1)$ such that $\lim_{n \to \infty} \gamma_n = \gamma$. This number is called the "Euler-Mascheroni" constant, about which very little is known. We don't even know whether it is rational or not.