Math 118 Winter 2015 Lecture 23 (Feb. 13, 2015)

- Tests.

Theorem 1. (Dirichlet) Let $f, g:[0, \infty) \mapsto \mathbb{R}$ be integrable on $[0, d]$ for every $d>0$. Assume
i. $\exists M>0, \forall d \in \mathbb{R},\left|\int_{0}^{d} f(t) \mathrm{d} t\right| \leqslant M ;$
ii. g is monotone with $\lim _{x \rightarrow \infty} g(x)=0$.

Then $f g$ is improperly integrable on $(0, \infty)$.
The proof of Theorem 1 is technical and we do not present it here. Instead we prove the following weaker version.

Theorem 2. Let $f, g:[0, \infty) \mapsto \mathbb{R}$ be continuous on $[0, d]$ for every $d>0$. Assume
i. $\exists M>0, \forall d \in \mathbb{R},\left|\int_{0}^{d} f(t) \mathrm{d} t\right| \leqslant M ;$
ii. g is monotone with $\lim _{x \rightarrow \infty} g(x)=0$;
iii. g is differentiable with g^{\prime} integrable on $[0, d]$ for every $d>0$.

Then $f g$ is improperly integrable on $(0, \infty)$.
Proof. By assumption $f g$ is integrable on $[0, d]$ for every $d>0$. Denote $F(x):=\int_{0}^{x} f(t) \mathrm{d} t$. Then by FTC2 we have $F^{\prime}(x)=f(x)$ and by assumption $|F(x)| \leqslant M$ for all $x>0$.

Now we calculate

$$
\begin{align*}
\int_{0}^{d} f(x) g(x) \mathrm{d} x & =\int_{0}^{d} g(x) \mathrm{d} F(x) \\
& =g(d) F(d)-g(0) F(0)-\int_{0}^{d} F(x) g^{\prime}(x) \mathrm{d} x \tag{1}
\end{align*}
$$

Exercise 1. Prove that $\lim _{d \rightarrow \infty} g(d) F(d)=0$. (Hint: ${ }^{1}$)
Thus all we need to show is that $A(d):=\int_{0}^{d} F(x) g^{\prime}(x) \mathrm{d} x$ is Cauchy. This follows from the calculation

$$
\begin{align*}
\left|A\left(d_{2}\right)-A\left(d_{1}\right)\right| & =\left|\int_{d_{1}}^{d_{2}} F(x) g^{\prime}(x) \mathrm{d} x\right| \\
& \leqslant M \int_{d_{1}}^{d_{2}}\left|g^{\prime}(x)\right| \mathrm{d} x \\
& =M\left|\int_{d_{1}}^{d_{2}} g^{\prime}(x) \mathrm{d} x\right| \tag{2}\\
& =M\left|g\left(d_{2}\right)-g\left(d_{1}\right)\right| \tag{3}
\end{align*}
$$

Exercise 2. Explain why (2) holds and write down the detailed proof of the claim: $A(d)$ is Cauchy.

Therefore $\lim _{d \rightarrow \infty} \int_{0}^{d} f(x) g(x) \mathrm{d} x$ exists and is finite and the conclusion follows.
Theorem 3. (Abel) Let $f, g:[0, \infty) \mapsto \mathbb{R}$ be integrable on $[0, d]$ for every $d>0$. Assume
i. $f(x)$ is improperly integrable on $(0, \infty)$;
ii. g is monotone and bounded.

Then $f g$ is improperly integrable on $(0, \infty)$.
Proof. As $f(x)$ is improperly integrable on $(0, \infty)$, there is $A \in \mathbb{R}$ such that

$$
\begin{equation*}
\lim _{d \rightarrow \infty} \int_{0}^{d} f(x) \mathrm{d} x=A \tag{4}
\end{equation*}
$$

Thus there is $d_{0}>0$ such that for all $d>d_{0},\left|\int_{0}^{d} f(x) \mathrm{d} x-A\right|<1$. Now since $f(x)$ is integrable on $\left[0, d_{0}\right]$, there is $K>0$ such that $|f(x)| \leqslant K$ for all $x \in\left[0, d_{0}\right]$. Now taking $M:=\max \left\{K d_{0},|A|+1\right\}$ we easily see that $\left|\int_{0}^{d} f(x) \mathrm{d} x\right| \leqslant M$ for all $d \in(0, \infty)$.

Since g is monotone and bounded, there is $p \in \mathbb{R}$ such that $\lim _{x \rightarrow \infty} g(x)=p$.
Now apply Theorem 1 to $f(x)$ and $g(x)-p$, we see that $f(x)[g(x)-p]$ is improperly integrable on $(0, \infty)$.

Finally, as $f(x)$ is improperly integrable on $(0, \infty)$ so is $p f(x)$ and consequently $f(x) g(x)=f(x)(g(x)-p)+p f(x)$ is improperly integrable on $(0, \infty)$.

Exercise 3. Formulate and prove Theorem 2 and Theorem 3 for the general interval (a, b) instead of $(0, \infty)$.

Example 4. Prove that $\frac{\sin x}{1+x^{1 / 2}}$ is improperly integrable on $(0, \infty)$.
Proof. We take $f(x)=\sin x$ and $g(x)=\frac{1}{1+x^{1 / 2}}$. Clearly the conditions of Theorem 1 is satisfied.

- Calculation of $\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x$.

Set

$$
\begin{equation*}
g(y):=\int_{0}^{\infty} e^{-x y} \frac{\sin x}{x} \mathrm{~d} x . \tag{5}
\end{equation*}
$$

Exercise 4. Prove that $g(y)$ is defined for all $y>0$.
We calculate

$$
\begin{equation*}
g^{\prime}(y)=\int_{0}^{\infty}(-x) e^{-x y} \frac{\sin x}{x} \mathrm{~d} x=-\int_{0}^{\infty} e^{-x y} \sin x \mathrm{~d} x=-\frac{1}{1+y^{2}} . \tag{6}
\end{equation*}
$$

Problem 1. Justify (6).
This gives

$$
\begin{equation*}
g(y)=C-\arctan y . \tag{7}
\end{equation*}
$$

Problem 2. Prove

$$
\lim _{y \rightarrow 0+} g(y)=\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x .
$$

From (7) we have $\lim _{y \rightarrow 0+} g(y)=C$. Therefore all we need is the value of C.
Exercise 5. Prove that

$$
\begin{equation*}
\lim _{y \rightarrow \infty} \int_{0}^{\infty} e^{-x y} \frac{\sin x}{x} \mathrm{~d} x=0 \tag{8}
\end{equation*}
$$

Taking $y \rightarrow \infty$ in (7) we see that $C=\frac{\pi}{2}$. Consequently $\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x=\frac{\pi}{2}$.

- Relation to Infinite Series.

Consider the "harmonic numbers" $H_{n}:=1+\frac{1}{2}+\cdots+\frac{1}{n}$. From

$$
\begin{align*}
& \frac{1}{2}=\int_{1}^{2} \frac{\mathrm{~d} x}{2}<\int_{1}^{2} \frac{\mathrm{~d} x}{x}<\int_{1}^{2} \frac{\mathrm{~d} x}{1}=1 \tag{9}\\
& \frac{1}{3}=\int_{2}^{3} \frac{\mathrm{~d} x}{3}<\int_{2}^{3} \frac{\mathrm{~d} x}{x}<\int_{2}^{3} \frac{\mathrm{~d} x}{2}=\frac{1}{2} \tag{10}
\end{align*}
$$

we see that

$$
\begin{equation*}
H_{n}-1<\int_{1}^{n} \frac{\mathrm{~d} x}{x}<H_{n-1}<H_{n} \tag{11}
\end{equation*}
$$

Exercise 6. Use (11) to prove the divergence of $\sum_{n=1}^{\infty} \frac{1}{n}$.
Exercise 7. Use similar idea to study the convergence/divergence of $\sum_{n=2}^{\infty} \frac{1}{n(\ln n)^{p}}, p \in \mathbb{R}$.
Rearranging the terms we have

$$
\begin{equation*}
\gamma_{n}:=H_{n}-\ln n \in(0,1) \tag{12}
\end{equation*}
$$

As

$$
\begin{equation*}
\gamma_{n+1}-\gamma_{n}=\int_{n}^{n+1}\left[\frac{1}{n+1}-\frac{1}{x}\right] \mathrm{d} x<0 \tag{13}
\end{equation*}
$$

γ_{n} is decreasing and therefore there is $\gamma \in(0,1)$ such that $\lim _{n \rightarrow \infty} \gamma_{n}=\gamma$. This number is called the "Euler-Mascheroni" constant, about which very little is known. We don't even know whether it is rational or not.

