MATH 118 WINTER 2015 HOMEWORK 5 SOLUTIONS

DUE THURSDAY FEB. 26 3PM IN ASSIGNMENT BoOX

QUESTION 1. (5 PTS) Prove the following by definition.

a) (2 pPTS) ﬁ is improperly integrable on (0,00).
b) (3 pTS) tanx is not improperly integrable on (—g,g)
Solution.
a) We have, for every 0 < c<d < oo,
d
/C 1 fli—xﬂ = arctan(d) — arctan(c). (1)
As limg_,oo [lime— 04 [arctan(d) — arctan(c)]] :g, 1 —:xQ is improperly integrable on (0, co).
b) We have, for every —g <c<d< g,
d
/ tanz dx = In|cos c¢| — In|cos d]|. (2)
4
Now as lim,_,_~_ In|cosc| = —o0 is not finite, tan x is not improperly integrable on (—g, g)
2

QUESTION 2. (5 PTS) Let | f| be improperly integrable on (a,b) and g be locally integrable on (a,b).
Further assume that g is bounded on (a,b). Prove that fg is improperly integrable on (a,b).

Proof. Let x € (a, b). It suffices to prove the improper integrability of fg on (a, zg] and [zg, b).
We prove it for [z, b) and the other half of the proof is almost identical.
Let d € [z, b] be arbitrary. Consider

d
G)= [ 1(@) gla)da. )
o
We will prove that G(d) is Cauchy as d — b —.

Let € >0 be arbitrary. As |f(z)| is improperly integrable on (a, b), there is dyp < b such that for
all b>ds > dq > d,

do e
[ 1@< ()
where M > |g(x)| for all = € (a, b). Now let da, d; € (dp, b) be arbitrary. We have
d2 d2
|G(d2) — G(d1)| = ; f(x) g(x)dz <L |f(z)| M dz <e. (5)
1 1
Therefore G(d) is Cauchy and the improper integrability follows. O

QUESTION 3. (5 PTS) Let f(x): [1, 00) be positive and decreasing. Denote ay, := f(n) for n € N.
Prove

[e.e]
Z an converges <= f(x) is improperly integrable on (1, 00). (6)

n=1



Solution.

=—. Let M := Zzozl ap. Thus for alln € N, a1 +as+ -+ a, < M. Now as f(x) is monotone,
it is Riemann integrable on [1, d] for every d € (1,00). Let d € (1,00) be arbitrary. There is
n € N such that n >d. We have

-1

d n n
F(d)::/1 f(:r)d:z:</1 f(x)dxzz
k

k1
/k f@)dz<ar+ - +an_1<M. (7)
=1

thus F'(d) is increasing on (1, 00) with upper bound M, therefore limg o F'(d) exists and is
finite.

<. Let n € N be arbitrary. We have
Zak<a1+/ f(a;)da;<a1+/ f(z)dz. (8)
p 1 1

Thus Y 7', aj has a finite upper bound for all n. Since a, = f(n) >0 for all n, Y- | a,
converges.

QUESTION 4. (5 pTS + 5 PTS) Consider the function

a
b
c

d

x

g(y) = /0 Y ey ST G (9)

sinx

3 PTS) Prove that g(y) is defined for all y>0. (Hint: Prove

<1)

2 pTS) Prove that limy .o g(y) =0.
3 EXTRA PTS) Prove that g(y) is differentiable on (0,00) with ¢'(y) =—

(
(
(
(

2 EXTRA PTS) Prove

lim g(y) :/ ST gz (10)
y—0+ 0 X

Note. You should prove directly and not use theorems from multi-variable calculus.

Proof.

a) Let y >0 be arbitrary. We first prove ‘%‘ <1 for all z €[0,00). We apply MVT:

sinz —sin0

z—0

sinx
T

‘ =|cosc| < 1. (11)

Thus we have
sinx

Le Y, (12)

Next we prove e~*¥ is improperly integrable on (0, 00). As e~ is integrable on [0, d] for all
d >0, we calculate

d 1[4 l—e® 1
/ e~y dx——/ e Wd(xy)=———— = as d— 0. (13)
0 YJo Y Y

The conclusion now follows.



b) From the previous calculation we have
o 1
aI< [ e da=
0 Y

Thus limy—..g(y) =0 follows from Squeeze Theorem.

1

o0
c) Let yo € (0,00) be arbitrary. Denote A:= —/ e~ ™osinydr = ——.
0 1+u5

o Let he(0,yo). We have

. oo _—xh
9(yo+h) — g(wo) —A:/ we_xyosin:cdsc.
h 0 zh

By MVT we have

e—mh -1 e—mh _ 6_0
= = |6_C|
zh xh—-0
for some c € (0, z h) which means
—xh
e —1+4+x h' <92
zh

for all x > 0.

Next by Taylor expansion with Lagrange form of remainder we have

—C
e‘mhzl—xh+62—'x2h2
for some c € (0, z h). Therefore

e *h _14+xh

<
zh Sah

for all x > 0. Now we estiamte
h71/2

Mm+m—9@®_A‘<
h AN

—1/2 xh

h71/2
< h/ e FYody
0

o0
+/' 2 =0 .
h71/2

It is clear that

o0

lim 2e"%odx =0.
h—0+ Jp—1/2
On the other hand, we have
h71/2 h71/2y0
/ xe‘myodaj—yo_2/ ue‘“dugyo_2(h_1/2yo+1).
0 0
Therefore

h71/2
lim A re TWodx =0.
h—0+ 0

—xzh __
/ L S 1 QA
0 X h

00 —xh _
h

(14)

(15)

(16)

(20)

(21)



Consequently

L 9W0th) —g(yo) _ 4
h— 04 h

e Lethe (—%,O). We have

9(yoth) —g(yo) _ 4 _ [T Laehe™ =™ _yin
h 0 .Z'h

Similar to the A >0 case, we have

14z he® —eh
zh

Furthermore we have
e~ (Woth) < o=ayo/2,

Now the proof proceeds similar to the case A >0 and we conclude

9(yo+h) —9(yo) _ 4

I
B0 h
* sinx
d) Denote I:= / . dx. We consider
0
0o .
o)~ I= [~ (e 1) ML,
0
S

Define h(x):=S Then
9(y) —I—/ h(z)sinz dz.
0

First notice that lim,_ch(x) =0 as  — oco. Furthermore we calculate

z .

_ —TY _ Ty —TY
_—xrye +1l—e _° e —1—zy]>0 for all z,y >0.

h'(x) — o

Thus h(x) increases from —y to 0 as = runs from 0 to oco.
We calculate

lg(y) —1I|=

/ h(zx)sinz dz
0

< \h(0+)|+/000 ()| da
= 2|h(0+)|=2y.

Now it is obvious that lirél [9(y) —1I]=0.
y—0+

e sinx dz.

= ‘—h(x)cosx|8°+/ h'(x) cosx dx
0

(24)

(25)

(32)



	Math 118 Winter 2015 Homework 5 Solutions
	Due Thursday Feb. 26 3pm in Assignment Box

