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Question 1. (5 pts) Prove the following by de�nition.

a) (2 pts)
1

1+x2
is improperly integrable on (0;1).

b) (3 pts) tanx is not improperly integrable on
¡
¡�

2
;
�

2

�
.

Solution.

a) We have, for every 0<c<d<1,Z
c

d dx
1+ x2

= arctan(d)¡ arctan(c): (1)

As limd!1 [limc!0+ [arctan(d)¡ arctan(c)]]= �

2
,

1
1+ x2

is improperly integrable on (0;1).

b) We have, for every ¡�

2
<c<d<

�

2
,Z

c

d

tanx dx= lnjcos cj ¡ lnjcosdj: (2)

Now as limc!¡�

2
+lnjcos cj=¡1 is not �nite, tanx is not improperly integrable on

¡
¡�

2
;
�

2

�
.

Question 2. (5 pts) Let jf j be improperly integrable on (a; b) and g be locally integrable on (a; b).
Further assume that g is bounded on (a; b). Prove that f g is improperly integrable on (a; b).

Proof. Let x0 2 (a; b). It su�ces to prove the improper integrability of f g on (a; x0] and [x0; b).
We prove it for [x0; b) and the other half of the proof is almost identical.

Let d2 [x0; b] be arbitrary. Consider

G(d) :=
Z
x0

d

f(x) g(x) dx: (3)

We will prove that G(d) is Cauchy as d¡! b¡ .
Let "> 0 be arbitrary. As jf(x)j is improperly integrable on (a; b), there is d0<b such that for

all b>d2>d1>d0, Z
d1

d2

jf(x)j dx< "
M

(4)

where M > jg(x)j for all x2 (a; b). Now let d2; d12 (d0; b) be arbitrary. We have

jG(d2)¡G(d1)j=

�����
Z
d1

d2

f(x) g(x) dx

�����6
Z
d1

d2

jf(x)jM dx<": (5)

Therefore G(d) is Cauchy and the improper integrability follows. �

Question 3. (5 pts) Let f(x): [1;1) be positive and decreasing. Denote an := f(n) for n 2 N.
Prove X

n=1

1

an converges () f(x) is improperly integrable on (1;1): (6)



Solution.

� =). LetM :=
P

n=1
1 an. Thus for all n2N, a1+a2+ ���+an<M . Now as f(x) is monotone,

it is Riemann integrable on [1; d] for every d2 (1;1). Let d2 (1;1) be arbitrary. There is
n2N such that n>d. We have

F (d) :=
Z
1

d

f(x) dx<
Z
1

n

f(x) dx=
X
k=1

n¡1 Z
k

k+1

f(x) dx6 a1+ ���+ an¡1<M: (7)

thus F (d) is increasing on (1;1) with upper bound M , therefore limd!1F (d) exists and is
�nite.

� (=. Let n2N be arbitrary. We haveX
k=1

n

ak6 a1+
Z
1

n

f(x) dx<a1+
Z
1

1
f(x) dx: (8)

Thus
P

k=1
n ak has a �nite upper bound for all n. Since an = f(n) > 0 for all n,

P
n=1
1 an

converges.

Question 4. (5 pts + 5 pts) Consider the function

g(y) :=
Z
0

1
e¡xy

sinx
x

dx: (9)

a) (3 pts) Prove that g(y) is de�ned for all y > 0. (Hint: Prove
��� sinx

x

���6 1)
b) (2 pts) Prove that limy!1g(y)= 0.

c) (3 extra pts) Prove that g(y) is di�erentiable on (0;1) with g 0(y)=¡ 1

1+ y2
.

d) (2 extra pts) Prove

lim
y!0+

g(y)=
Z
0

1 sinx
x

dx: (10)

Note. You should prove directly and not use theorems from multi-variable calculus.

Proof.

a) Let y > 0 be arbitrary. We �rst prove
��� sinx

x

���6 1 for all x2 [0;1). We apply MVT:���� sinxx
����= ���� sinx¡ sin0

x¡ 0

����= jcos cj6 1: (11)

Thus we have ����e¡xy sinxx
����6 e¡xy: (12)

Next we prove e¡xy is improperly integrable on (0;1). As e¡xy is integrable on [0; d] for all
d> 0, we calculateZ

0

d

e¡xy dx= 1
y

Z
0

d

e¡xy d(x y)= 1¡ e¡dy
y

¡! 1
y
as d!1: (13)

The conclusion now follows.



b) From the previous calculation we have

jg(y)j6
Z
0

1
e¡xy dx= 1

y
: (14)

Thus limy!1g(y)= 0 follows from Squeeze Theorem.

c) Let y02 (0;1) be arbitrary. Denote A :=¡
Z
0

1
e¡xy0 sinxdx=¡ 1

1+ y0
2
.

� Let h2 (0; y0). We have

g(y0+h)¡ g(y0)
h

¡A=
Z
0

1 e¡xh¡ 1+ xh
xh

e¡xy0 sinxdx: (15)

By MVT we have ����e¡xh¡ 1xh

����= ����e¡xh¡ e¡0xh¡ 0

����= je¡cj (16)

for some c2 (0; x h) which means����e¡xh¡ 1+xh
xh

����6 2 (17)

for all x> 0.
Next by Taylor expansion with Lagrange form of remainder we have

e¡xh=1¡xh+ e¡c

2!
x2h2 (18)

for some c2 (0; x h). Therefore����e¡xh¡ 1+ xh
xh

����6xh (19)

for all x> 0. Now we estiamte����g(y0+h)¡ g(y0)
h

¡A
���� 6

�����
Z
0

h¡1/2 e¡xh¡ 1+xh
xh

e¡xy0 sinx dx

�����
+
����Z
h¡1/2

1 e¡xh¡ 1+xh
xh

e¡xy0 sinx dx
����

6 h

Z
0

h¡1/2

x e¡xy0 dx

+
Z
h¡1/2

1
2 e¡xy0 dx: (20)

It is clear that

lim
h!0+

Z
h¡1/2

1
2 e¡xy0 dx=0: (21)

On the other hand, we haveZ
0

h¡1/2

x e¡xy0 dx= y0
¡2

Z
0

h¡1/2y0
u e¡udu6 y0

¡2¡h¡1/2 y0+1
�
: (22)

Therefore

lim
h!0+

h

Z
0

h¡1/2

x e¡xy0 dx=0: (23)



Consequently

lim
h!0+

g(y0+h)¡ g(y0)
h

=A: (24)

� Let h2
¡
¡y0

2
; 0

�
. We have

g(y0+h)¡ g(y0)
h

¡A=
Z
0

1 1+ xh exh¡ exh
xh

e¡x(y0+h) sinx dx: (25)

Similar to the h> 0 case, we have����1+ xh exh¡ exh
xh

����6 2; ����1+xh exh¡ exh
xh

����6x jhj: (26)

Furthermore we have

e¡x(y0+h)6 e¡xy0/2: (27)

Now the proof proceeds similar to the case h> 0 and we conclude

lim
h!0¡

g(y0+h)¡ g(y0)
h

=A: (28)

d) Denote I :=
Z
0

1 sinx
x

dx. We consider

g(y)¡ I =
Z
0

1
(e¡xy ¡ 1) sinx

x
dx: (29)

De�ne h(x) := e¡xy ¡ 1
x

. Then

g(y)¡ I =
Z
0

1
h(x) sinx dx: (30)

First notice that limx!1h(x)= 0 as x¡!1. Furthermore we calculate

h0(x)= ¡x y e
¡xy+1¡ e¡xy

x2
= e¡xy

x2
[exy ¡ 1¡x y]> 0 for all x; y > 0: (31)

Thus h(x) increases from ¡y to 0 as x runs from 0 to 1.
We calculate

jg(y)¡ I j=
����Z
0

1
h(x) sinx dx

���� =
����¡h(x) cosxj01+

Z
0

1
h0(x) cosx dx

����
6 jh(0+ )j+

Z
0

1
jh0(x)jdx

= 2 jh(0+ )j=2 y: (32)

Now it is obvious that lim
y!0+

[g(y)¡ I ]= 0. �
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