Math 118 Winter 2015 Homework 5

Due Thursday Feb. 26 3pm in Assignment Box

Question 1. (5 Pts) Prove the following by definition.
a) (2 PTS) $\frac{1}{1+x^{2}}$ is improperly integrable on $(0, \infty)$.
b) (3 PTS$) \tan x$ is not improperly integrable on $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

Question 2. (5 pts) Let $|f|$ be improperly integrable on (a, b) and g be locally integrable on (a, b). Further assume that g is bounded on (a, b). Prove that $f g$ is improperly integrable on (a, b).

Question 3. (5 pts) Let $f(x):[1, \infty) \mapsto \mathbb{R}$ be positive and decreasing. Denote $a_{n}:=f(n)$ for $n \in \mathbb{N}$. Prove

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \text { converges } \Longleftrightarrow f(x) \text { is improperly integrable on }(1, \infty) . \tag{1}
\end{equation*}
$$

Question 4. (5 Pts $+\mathbf{5} \mathbf{P T S}$) Consider the function

$$
\begin{equation*}
g(y):=\int_{0}^{\infty} e^{-x y} \frac{\sin x}{x} \mathrm{~d} x . \tag{2}
\end{equation*}
$$

a) (3 PTS) Prove that $g(y)$ is defined for all $y>0$. (Hint: Prove $\left|\frac{\sin x}{x}\right| \leqslant 1$)
b) (2 PTS) Prove that $\lim _{y \rightarrow \infty} g(y)=0$.
c) (2 extra Pts) Prove

$$
\begin{equation*}
\lim _{y \rightarrow 0+} g(y)=\int_{0}^{\infty} \frac{\sin x}{x} \mathrm{~d} x . \tag{3}
\end{equation*}
$$

d) (3 extra pts) Prove that $g(y)$ is differentiable on $(0, \infty)$ with $g^{\prime}(y)=-\frac{1}{1+y^{2}}$.

Note. You should prove directly and not use theorems from multi-variable calculus.

