MATH 118 WINTER 2015 LECTURE 21 (Feb. 11, 2015)

- Recall: Improper (Riemann) Integrals.
 - (LOCAL INTEGRABILITY) A function $f:(a, b) \mapsto \mathbb{R}$ is said to be "locally integrable" on (a, b) if and only if for every $[c, d] \subset (a, b)$, f is Riemann integrable on [c, d].
 - (IMPROPER INTEGRABILITY) A function $f: (a, b) \mapsto \mathbb{R}$ is said to be "improperly integrable" on (a, b) if and only if
 - i. f is locally integrable on (a, b);

ii.
$$A := \lim_{d \to b^-} \left[\lim_{c \to a^+} \int_c^d f(x) \, \mathrm{d}x \right] \quad (\text{or } \lim_{c \to a^+} \left[\lim_{d \to b^-} \int_c^d f(x) \, \mathrm{d}x \right]) \text{ exists and is}$$
finite.

We denote $\int_{a}^{b} f(x) \, \mathrm{d}x = A$.

- (SIMPLIFIED INTEGRABILITY CHECK)
 - If f is Riemann integrable on (a, b) then it is improperly integrable on (a, b).
 - If f is Riemann integrable on [a, d] for every $d \in (a, b)$, then f is improperly integrable on (a, b) if and only if $A := \lim_{d \to b^-} \int_a^d f(x) \, dx$ exists and is finite.
 - If f is Riemann integrable on [c, b] for every $c \in (a, b)$, then then f is improperly integrable on (a, b) if and only if $A := \lim_{c \to a+} \int_{c}^{b} f(x) dx$ exists and is finite.
- Properties.
 - Integrability.

Exercise 1. Find a continuous $f:(a, b) \mapsto \mathbb{R}$ such that f is not improperly integrable on (a, b). What if we further require (a, b) to be bounded? (Hint:¹)

Exercise 2. Find a decreasing function $f: (0, \infty)$ such that $\lim_{x\to\infty} f(x) = 0$ but f is not improperly integrable on (a, b). (Hint:²)

• Arithmetics.

Exercise 3. Let $f, g: (a, b) \mapsto \mathbb{R}$ be improperly integrable. Let $r, s \in \mathbb{R}$ be arbitrary. Prove that r f + s g is improperly integrable on (a, b) and furthermore $\int_{a}^{b} [r f + s g] dx = r \int_{a}^{b} f(x) dx + s \int_{a}^{b} g(x) dx$.

Example 1. Let $f(x) := \frac{\sin x}{x}$. Then f(x) is improperly integrable on (π, ∞) but |f(x)| is not.

Proof. It is clear that $\frac{\sin x}{x}$ is integrable on $[\pi, d]$ for every $d < \infty$. Now we integrate by parts

$$\int_{\pi}^{d} \frac{\sin x}{x} dx = \frac{-\cos x}{x} \Big|_{\pi}^{d} - \int_{\pi}^{d} \frac{\cos x}{x^{2}} dx$$
$$= -\frac{\cos d}{d} - \frac{1}{\pi} - \int_{\pi}^{d} \frac{\cos x}{x^{2}} dx.$$
(1)

^{1.} $\sin x$.

^{2.} 1/x.

As $\lim_{d\to\infty} \frac{1}{\pi} = \frac{1}{\pi}$ and

$$-\frac{1}{d} \leqslant \frac{\cos d}{d} \leqslant \frac{1}{d} \xrightarrow{\text{Squeeze}}_{d \to \infty} \lim_{d \to \infty} \frac{\cos d}{d} = 0, \tag{2}$$

all we need to prove now is the existence of $\lim_{d\to\infty} F(d)$ where $F(d) := \int_{\pi}^{d} \frac{\cos x}{x^2} dx$. We show that F(d) is Cauchy.

Let $\varepsilon > 0$ be arbitrary. Take $d_0 := \varepsilon^{-1}$. Then for every $d_2 > d_1 > d_0$ we have

$$|F(d_2) - F(d_1)| = \left| \int_{d_1}^{d_2} \frac{\cos x}{x^2} dx \right|$$

$$\leqslant \int_{d_1}^{d_2} \frac{|\cos x|}{x^2} dx$$

$$\leqslant \int_{d_1}^{d_2} \frac{dx}{x^2}$$

$$\leqslant \frac{1}{d_1}$$

$$< \frac{1}{d_0} = \varepsilon.$$
(3)

Therefore F(d) is Cauchy and the proof ends.

Now we show that $\left|\frac{\sin x}{x}\right|$ is not improperly integrable on (π, ∞) . All we need to show is that $G(d) := \int_{\pi}^{d} \left|\frac{\sin x}{x}\right| dx$ does not have a finite limit as $d \longrightarrow \infty$. Take $d_n := n \pi$. We have

$$G(d_n) = \int_{\pi}^{n\pi} \frac{|\sin x|}{x} dx$$

$$= \sum_{k=1}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} dx$$

$$\geqslant \sum_{k=1}^{n-1} \int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{(k+1)\pi} dx$$

$$\frac{t=x-k\pi}{k} \sum_{k=1}^{n-1} \frac{1}{(k+1)\pi} \int_{0}^{\pi} |\sin x| dx$$

$$= \frac{2}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1}.$$
(4)

Thus $\lim_{n\to\infty} G(d_n) = \infty$ and the conclusion follows.

Exercise 4. Prove that $f(x) = \frac{\sin x}{x}$ is improperly integrable on $(0, \infty)$.

Remark 2. The above example shows that, in contrast to Riemann integrability, the improper integrability of f does not imply the improper integrability of |f|. We will see later that the improper integrability of f, g does not imply the improper integrability of the product fg either.