Math 118 Winter 2015 Lecture 21 (Feb. 11, 2015)

- Recall: Improper (Riemann) Integrals.
- (Local Integrability) A function $f:(a, b) \mapsto \mathbb{R}$ is said to be "locally integrable" on (a, b) if and only if for every $[c, d] \subset(a, b), f$ is Riemann integrable on $[c, d]$.
- (Improper Integrability) A function $f:(a, b) \mapsto \mathbb{R}$ is said to be "improperly integrable" on (a, b) if and only if
i. f is locally integrable on (a, b);
ii. $A:=\lim _{d \rightarrow b-}\left[\lim _{c \rightarrow a+} \int_{c}^{d} f(x) \mathrm{d} x\right] \quad\left(\right.$ or $\lim _{c \rightarrow a+}\left[\lim _{d \rightarrow b-} \int_{c}^{d} f(x) \mathrm{d} x\right]$) exists and is finite.
We denote $\int_{a}^{b} f(x) \mathrm{d} x=A$.
- (Simplified Integrability Check)
- If f is Riemann integrable on (a, b) then it is improperly integrable on (a, b).
- If f is Riemann integrable on $[a, d]$ for every $d \in(a, b)$, then f is improperly integrable on (a, b) if and only if $A:=\lim _{d \rightarrow b-} \int_{a}^{d} f(x) \mathrm{d} x$ exists and is finite.
- If f is Riemann integrable on $[c, b]$ for every $c \in(a, b)$, then then f is improperly integrable on (a, b) if and only if $A:=\lim _{c \rightarrow a+} \int_{c}^{b} f(x) \mathrm{d} x$ exists and is finite.
- Properties.
- Integrability.

Exercise 1. Find a continuous $f:(a, b) \mapsto \mathbb{R}$ such that f is not improperly integrable on (a, b). What if we further require (a, b) to be bounded? (Hint: ${ }^{1}$)
Exercise 2. Find a decreasing function $f:(0, \infty)$ such that $\lim _{x \rightarrow \infty} f(x)=0$ but f is not improperly integrable on (a, b). (Hint: ${ }^{2}$)

- Arithmetics.

Exercise 3. Let $f, g:(a, b) \mapsto \mathbb{R}$ be improperly integrable. Let $r, s \in \mathbb{R}$ be arbitrary. Prove that $r f+s g$ is improperly integrable on (a, b) and furthermore $\int_{a}^{b}[r f+s g] \mathrm{d} x=r \int_{a}^{b} f(x) \mathrm{d} x+$ $s \int_{a}^{b} g(x) \mathrm{d} x$.
Example 1. Let $f(x):=\frac{\sin x}{x}$. Then $f(x)$ is improperly integrable on (π, ∞) but $|f(x)|$ is not.
Proof. It is clear that $\frac{\sin x}{x}$ is integrable on $[\pi, d]$ for every $d<\infty$. Now we integrate by parts

$$
\begin{align*}
\int_{\pi}^{d} \frac{\sin x}{x} \mathrm{~d} x & =\left.\frac{-\cos x}{x}\right|_{\pi} ^{d}-\int_{\pi}^{d} \frac{\cos x}{x^{2}} \mathrm{~d} x \\
& =-\frac{\cos d}{d}-\frac{1}{\pi}-\int_{\pi}^{d} \frac{\cos x}{x^{2}} \mathrm{~d} x \tag{1}
\end{align*}
$$

[^0]As $\lim _{d \rightarrow \infty} \frac{1}{\pi}=\frac{1}{\pi}$ and

$$
\begin{equation*}
-\frac{1}{d} \leqslant \frac{\cos d}{d} \leqslant \frac{1}{d} \xlongequal{\text { Squeeze }} \lim _{d \rightarrow \infty} \frac{\cos d}{d}=0 \tag{2}
\end{equation*}
$$

all we need to prove now is the existence of $\lim _{d \rightarrow \infty} F(d)$ where $F(d):=\int_{\pi}^{d} \frac{\cos x}{x^{2}} \mathrm{~d} x$.
We show that $F(d)$ is Cauchy We show that $F(d)$ is Cauchy.

Let $\varepsilon>0$ be arbitrary. Take $d_{0}:=\varepsilon^{-1}$. Then for every $d_{2}>d_{1}>d_{0}$ we have

$$
\begin{align*}
\left|F\left(d_{2}\right)-F\left(d_{1}\right)\right| & =\left|\int_{d_{1}}^{d_{2}} \frac{\cos x}{x^{2}} \mathrm{~d} x\right| \\
& \leqslant \int_{d_{1}}^{d_{2}} \frac{|\cos x|}{x^{2}} \mathrm{~d} x \\
& \leqslant \int_{d_{1}}^{d_{2}} \frac{\mathrm{~d} x}{x^{2}} \\
& \leqslant \frac{1}{d_{1}} \\
& <\frac{1}{d_{0}}=\varepsilon . \tag{3}
\end{align*}
$$

Therefore $F(d)$ is Cauchy and the proof ends.
Now we show that $\left|\frac{\sin x}{x}\right|$ is not improperly integrable on (π, ∞). All we need to show is that $G(d):=\int_{\pi}^{d}\left|\frac{\sin x}{x}\right| \mathrm{d} x$ does not have a finite limit as $d \longrightarrow \infty$. Take $d_{n}:=n \pi$. We have

$$
\begin{align*}
& G\left(d_{n}\right)=\int_{\pi}^{n \pi} \frac{|\sin x|}{x} \mathrm{~d} x \\
&=\sum_{k=1}^{n-1} \int_{k \pi}^{(k+1) \pi} \frac{|\sin x|}{x} \mathrm{~d} x \\
& \geqslant \sum_{k=1}^{n-1} \int_{k \pi}^{(k+1) \pi} \frac{|\sin x|}{(k+1) \pi} \mathrm{d} x \\
& \xlongequal{t=x-k \pi} \sum_{k=1}^{n-1} \frac{1}{(k+1) \pi} \int_{0}^{\pi}|\sin x| \mathrm{d} x \\
&=\frac{2}{\pi} \sum_{k=1}^{n-1} \frac{1}{k+1} . \tag{4}
\end{align*}
$$

Thus $\lim _{n \rightarrow \infty} G\left(d_{n}\right)=\infty$ and the conclusion follows.
Exercise 4. Prove that $f(x)=\frac{\sin x}{x}$ is improperly integrable on $(0, \infty)$.
Remark 2. The above example shows that, in contrast to Riemann integrability, the improper integrability of f does not imply the improper integrability of $|f|$. We will see later that the improper integrability of f, g does not imply the improper integrability of the product $f g$ either.

[^0]: 1. $\sin x$.
 2. $1 / x$.
