MATH 118 WINTER 2015 LECTURE 20 (Feb. 9, 2015)

Note. In the following $a, b \in \mathbb{R} \cup \{\pm \infty\}$.

• Improper (Riemann) Integrals

DEFINITION 1. (LOCAL INTEGRABILITY) A function $f: (a, b) \mapsto \mathbb{R}$ is said to be "locally integrable" on (a, b) if and only if for every $[c, d] \subset (a, b)$, f is Riemann integrable on [c, d].

Exercise 1. Find a function that is locally integrable but not Riemann integrable on (0, 1).

Exercise 2. Prove that every $[c, d] \subset (a, b)$ must be finite, even though a (or b or both) could be infinity.

Remark 2. The reason why the above is called "local integrability" is that it is equivalent to the following requirement:

For every $u \in (a, b)$, there is $\delta > 0$ such that f is Riemann integrable on $[u - \delta, u + \delta]$.

Problem 1. Prove that f is locally integrable on (a, b) if and only if f meets the above requirement. (Hint:¹)

DEFINITION 3. (IMPROPER INTEGRABILITY) A function $f: (a, b) \mapsto \mathbb{R}$ is said to be "improperly integrable" on (a, b) if and only if

i. f is locally integrable on
$$(a, b)$$
;
ii. $A := \lim_{d \to b^-} \left[\lim_{c \to a^+} \int_c^d f(x) \, dx \right]$ exists and is finite.
We denote $\int_a^b f(x) \, dx = A$.

Examples.

Example 4. Prove by definition that e^{-x} is improperly integrable on $(0, \infty)$.

Proof. First let $[c, d] \subset (0, \infty)$ be arbitrary. Then c > 0 and $d < \infty$ so [c, d] is bounded. As e^{-x} is continuous on the bounded closed interval [c, d] it is integrable on [c, d]. So e^{-x} is locally integrable on $(0, \infty)$.

Next we calculate

$$\lim_{d \to \infty} \left[\lim_{c \to 0+} \int_{c}^{d} e^{-x} dx \right] = \lim_{d \to \infty} \left[\lim_{c \to 0+} \left[e^{-c} - e^{-d} \right] \right]$$
$$= \lim_{d \to \infty} \left[1 - e^{-d} \right] = 1.$$
(1)

Therefore e^{-x} is improperly integrable on $(0, \infty)$ with $\int_0^\infty e^{-x} dx = 1$.

Example 5. Prove by definition that $\ln x$ is improperly integrable on (0, 1).

Proof. First let $[c, d] \subset (0, 1)$ be arbitrary. Then c > 0, d < 1 and [c, d] is bounded. As $\ln x$ is continuous on [c, d], it is integrable on [c, d] and thus locally integrable on (0, 1).

^{1.} First show that there is a sequence $\{u_n\}$ such that $[c, d] \subset \bigcup_{n \in \mathbb{N}} (u_n - \delta_n, u_n + \delta_n)$. Then use Bolzano-Weierstrass to prove that [c, d] is contained in a finite union of some $(u_n - \delta_n, u_n + \delta_n)$.

Next we calculate

$$\lim_{d \to 1^{-}} \left[\lim_{c \to 0^{+}} \int_{c}^{d} \ln x \, \mathrm{d}x \right] = \lim_{d \to 1^{-}} \left[\lim_{c \to 0^{+}} \left[d \ln d - c \ln c - d + c \right] \right]$$
$$= \lim_{d \to 1^{-}} \left[d \ln d - d \right] = -1. \tag{2}$$

So $\ln x$ is improperly integrable on (0,1) with $\int_0^1 \ln x \, dx = -1$.

Exercise 3. Why does $\lim_{c\to 0+} c \ln c = 0$?

Example 6. Prove by definition that $\sin x$ is not improperly integrable on $(0, \infty)$.

Proof. We calculate

$$\lim_{d \to \infty} \left[\lim_{c \to 0+} \int_{c}^{d} \sin x \, \mathrm{d}x \right] = \lim_{d \to \infty} \left[\lim_{c \to 0+} \left[\cos c - \cos d \right] \right] \\= \lim_{d \to \infty} \left[1 - \cos d \right]. \tag{3}$$

As $\lim_{d\to\infty} [1 - \cos d]$ does not exist, $\sin x$ is not improperly integrable on $(0, \infty)$.

- Theoretical issues.
 - Improper integrals generalize Riemann integrals.

PROPOSITION 7. Let $f:[a,b] \mapsto \mathbb{R}$ be Riemann integrable on [a,b] with $\int_a^b f(x) dx = A \in \mathbb{R}$. Then it is improperly integrable on (a,b) with improper integral A.

Exercise 4. Prove Proposition 7. (Hint:²)

• The order of the limits does not matter.

PROPOSITION 8. Let f be locally integrable on (a, b). Then

$$\lim_{d \to b^{-}} \left[\lim_{c \to a^{+}} \int_{c}^{d} f(x) \, \mathrm{d}x \right] = A \Longleftrightarrow \lim_{c \to a^{+}} \left[\lim_{d \to b^{-}} \int_{c}^{d} f(x) \, \mathrm{d}x \right] = A.$$
(4)

Exercise 5. Prove Proposition 8. (Hint:³)

• Sometimes only one limit is needed.

PROPOSITION 9. Let f be integrable on [a, d] for every $d \in (a, b)$. Then f is improperly integrable on (a, b) if and only if $A := \lim_{d \to b^-} \int_a^d f(x) dx$ exists and is finite. Furthermore the improper integral $\int_a^b f(x) dx = A$. A similar result holds when f is integrable on [c, b] for every $c \in (a, b)$.

Exercise 6. Prove Proposition 9.

^{2.} FTC2. Don't forget to prove local integrability first.

^{3.} Take an arbitrary $e \in (a, b)$. Fix it. Write $\int_{c}^{d} f(x) dx = \int_{c}^{e} f(x) dx + \int_{e}^{d} f(x) dx$.