Math 118 Winter 2015 Lecture 19 (Feb. 5, 2015)

Midterm 1 Review 3

- Integration of functions involving roots.
- $\int R\left(x,\left(\frac{a x+b}{c x+d}\right)^{1 / m_{1}}, \ldots,\left(\frac{a x+b}{c x+d}\right)^{1 / m_{k}}\right):$ Set $t=\left(\frac{a x+b}{c x+d}\right)^{1 / m}$ where m is the least common multiple of m_{1}, \ldots, m_{k}.
- $\int R\left(x, \sqrt{a x^{2}+b x+c}\right)$: Reduce to the previous case or trivial case when $a x^{2}+b x+$ $c=0$ has real roots; Set $t=\sqrt{a x^{2}+b x+c} \pm \sqrt{a} x$ when $a x^{2}+b x+c>0$ for all x.
- Examples.

Example 1. Integrate the following.
a) $\int \frac{x^{1 / 2} \mathrm{~d} x}{x^{3 / 4}+1}$;
b) $\int \frac{\sqrt{x+4}}{x} \mathrm{~d} x$;
c) $\int \frac{\mathrm{d} x}{\sqrt{x^{2}+2}}$.

Solution.

a) We have

$$
\begin{align*}
\int \frac{x^{1 / 2} \mathrm{~d} x}{x^{3 / 4}+1} \xlongequal{t=x^{1 / 4}} & \int \frac{4 t^{5}}{t^{3}+1} \mathrm{~d} t \\
= & 4 \int\left[t^{2}-\frac{t^{2}}{t^{3}+1}\right] \mathrm{d} t \\
& =\frac{4}{3} t^{3}-\frac{3}{4} \ln \left|t^{3}+1\right|+C \\
& =\frac{4}{3}\left[x^{3 / 4}-\ln \left|x^{3 / 4}+1\right|\right]+C \tag{1}
\end{align*}
$$

Exercise 1. Try $t=x^{3 / 4}+1 .{ }^{1}$
b) We have

$$
\begin{align*}
\int \frac{\sqrt{x+4}}{x} \mathrm{~d} x \xlongequal{t=\sqrt{x+4}} & \int \frac{2 t^{2}}{t^{2}-4} \mathrm{~d} t \\
& =\int\left[2+\frac{8}{t^{2}-4}\right] \mathrm{d} t \\
& =\quad 2 t+2 \ln \left|\frac{t-2}{t+2}\right|+C \\
= & 2 \sqrt{x+4}+2 \ln \left|\frac{\sqrt{x+4}-2}{\sqrt{x+4}+2}\right|+C . \tag{2}
\end{align*}
$$

c) We set $\sqrt{x^{2}+2}=x+t$ to obtain

$$
\begin{equation*}
x=\frac{2-t^{2}}{2 t}, \quad \sqrt{x^{2}+2}=\frac{2+t^{2}}{2 t}, \quad \mathrm{~d} x=-\frac{2+t^{2}}{2 t^{2}} \mathrm{~d} t . \tag{3}
\end{equation*}
$$

[^0]Thus

$$
\begin{array}{rll}
\int \frac{\mathrm{d} x}{\sqrt{x^{2}+2}} \xlongequal{t=\sqrt{x^{2}+2}-x} & \int \frac{-\frac{2+t^{2}}{2 t^{2}} \mathrm{~d} t}{\frac{2+t^{2}}{2 t}} \\
= & -\int \frac{\mathrm{d} t}{t} \\
= & -\ln |t|+C \\
= & -\ln \left|\sqrt{x^{2}+2}-x\right|+C . \tag{4}
\end{array}
$$

Exercise 2. Someone obtain $\ln \left|x+\sqrt{x^{2}+2}\right|+C$. Did he make a mistake? Explain.
Exercise 3. Calculate this integral using trig substitution.
Exercise 4. Calculate this integral using the change of variables indicated by Chebyshev's theorem.

- Chebyshev \& Liouville
- Chebyshev: Know how to integrate

$$
\begin{equation*}
\int(a x+b)^{r}(c x+d)^{s} \mathrm{~d} x \tag{5}
\end{equation*}
$$

where $r, s \in \mathbb{Q}$.

- Liouville: Know that if $\int f(x) e^{g(x)} \mathrm{d} x$, where f, g are rational, is elementary, then it must be of the form $R(x) e^{g(x)}$ where $R(x)$ is rational.
- Other issues and some challenge problems.
- Simplification.

When using trig substitutions we often need to represent one trig function by another trig function.

Example 2. $x=\tan t$, then $\sin t=?(x)$?
Solution. We have

$$
\begin{equation*}
x=\frac{\sin t}{\cos t}=\frac{\sin t}{\sqrt{1-\sin ^{2} t}} \Longrightarrow x^{2}\left(1-\sin ^{2} t\right)=\sin ^{2} t \Longrightarrow \sin t= \pm \frac{x}{\sqrt{1+x^{2}}} . \tag{6}
\end{equation*}
$$

To determine the sign, we notice that in $x=\tan t$ we can take $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ which means $\sin t$ has the same sign as $\tan t$ and consequently we should take the plus sign.

Remark 3. The issue seems a bit complicated as we could also take $t \in\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$. However it seems to me for $\sin t$ to appear in the final answer, somewhere during the calculation $\cos t$ must present. As the original variable is $x, \cos t$ can only appear from $\sqrt{x^{2}+1}$ and we would have to choose a sign for it then. This sign would also depend on whether $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ or $\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right)$.
Question 4. (Problems like this will not be in the midterm; The meaning of $\frac{\partial f}{\partial a}$ is simply to differentiate treating a as the variable and ignoring x. You can also search "partial derivative" in wiki)

Let $a_{0} \in \mathbb{R}$. Critique the following claim.

$$
\begin{equation*}
\int f(x, a) \mathrm{d} x=F(x, a)+C \Longrightarrow \int\left[\frac{\partial f}{\partial a}\left(x, a_{0}\right)\right] \mathrm{d} x=\frac{\partial F}{\partial a}\left(x, a_{0}\right) . \tag{7}
\end{equation*}
$$

If you think it is true, prove it through definition of indefinite integrals, and apply it to calculate $\int \frac{\mathrm{d} x}{\left(x^{2}+1\right)^{k}}$ with $k=2,3$. If you think it is false find a counter-example.

[^0]: 1. Thanks to Mr. Weicheng Li for observing this.
