
Math 118 Winter 2015 Lecture 15 (Jan. 29, 2015)

� Recall:

� Integration by parts:Z
a

b

u(x) v 0(x) dx=u(b) v(b)¡u(a) v(a)¡
Z
a

b

u0(x) v(x) dx: (1)

holds if

i. u; v are continuous on [a; b];

ii. u; v are di�erentiable on (a; b);

iii. u0; v 0 are integrable on (a; b).

� Change of variable: Z
a

b

f(u(t))u0(t) dt=
Z
u(a)

u(b)

f(x) dx: (2)

holds if

i. f is continuous on u([a; b]);

ii. u is continuous on [a; b];

iii. u is di�erentiable on (a; b);

iv. u0 is integrable on (a; b).

� In practice: (1) and (2) hold as long as all the functions involved in the formulas are
continuous on [a; b].

� Simple examples

Example 1. Calculate Z
0

1

x exdx: (3)

Solution. We set v= ex; u=x. Then we haveZ
0

1

x exdx =
Z
0

1

xdex (4)

= x exj01¡
Z
0

1

exdx (5)

= e¡ exjx=0x=1 (6)
= 1: (7)

Example 2. Calculate Z
0

�/4 dx
cosx

: (8)

Solution. Set y= sinx. We see that [0; �/4] is mapped to [sin 0; sin(�/4)]=
h
0; 2
p

2

i
.



Now calculate Z
0

�/4 dx
cosx

=
Z
0

�/4 cosx dx
cos2x

=
Z
0

�/4 cosxdx
1¡ sin2x

=
Z
0

2
p

/2 dy
1¡ y2

= ¡1
2

Z
0

2
p

/2
�

dy
y¡ 1 ¡

dy
y+1

�
= ¡1

2
[lnjy¡ 1j¡ lnjy+1j]y=0

y= 2
p

/2

= 1
2
ln
�
y+1
1¡ y

�
y=0

y= 2
p

/2

= 1
2
ln

 
2

p
+1

2
p
¡ 1

!
: (9)

Exercise 1. Prove the following:

a) Let f be even and integrable on [¡a; a], thenZ
¡a

a

f(x) dx=2

Z
0

a

f(x) dx: (10)

b) Let f be odd and integrable on [¡a; a], thenZ
¡a

a

f(x) dx=0: (11)

Example 3. Calculate I :=
Z
0

1

x2 1¡x2
p

dx.

Solution. Set x= sin t. Thus we haveZ
0

1

x2 1¡x2
p

dx =
Z
0

�/2

sin2t cos2tdt

= 1
4

Z
0

�/2

sin22 tdt

= 1
8

Z
0

�/2

[1¡ cos 4 t] dt

= �
16
: (12)

� More involved examples.

Example 4. Calculate In :=
Z
0

�/2

sinnxdx.

Solution. Through integration by parts, we have

In=(n¡ 1) In¡2¡ (n¡ 1) In=) In=
n¡ 1
n

In¡2: (13)

As

I0=
�
2
; I1=1; (14)



we have

In=

8>>><>>>:
(2 k¡ 1) (2 k¡ 3)���3 � 1
2 k (2 k¡ 2) ��� 4 � 2

�
2

n=2 k

2 k (2 k¡ 2) ���4 � 2
(2 k+1) (2 k¡ 1) ���3 � 1 n=2 k+1

: (15)

Exercise 2. Calculate Jn :=
Z
0

�/2

cosnxdx.

Exercise 3. Prove the Wallis formula:

�

2
= lim
n!1

�
2n (2n¡ 2) ���4 � 2

(2n¡ 1) (2n¡ 3)���3 � 1

�
2 1

2n+1
: (16)

(Hint:1 )

Note. In practice we often deal with de�nite integrals with singularities, such as a=¡1,
b=1, or f is unbounded on [a; b]. Such integrals are not covered by the theory of Riemann
integrals but by a simple generalization of it, the theory of improper integrals. We will deal
with this theory in a couple of weeks. For now, let's just accept that FTC1 as well as (1)
and (2) still hold for such integrals, as long as everything are continuous and the integrals
makes sense.

Example 5. Let n2N. Calculate
Z
0

1
xn e¡xdx.

Solution. Denote this integral by In. Then we have

In = ¡
Z
0

1
xnde¡x

= ¡xn e¡xj01+n
Z
0

1
xn¡1 e¡xdx

= n In¡1: (17)

Exercise 4. Why do all the boundary terms vanish?

From this we easily deduce: Z
0

1
xn e¡xdx=n!: (18)

Exercise 5. Calculate
Z
0

1
e¡x sin x dx,

Z
0

1
e¡x cos xdx.

Definition 6. Let t > 0. We de�ne the �Gamma function� ¡(t) as

¡(t) :=
Z
0

1
xt¡1 e¡xdx: (19)

Exercise 6. Prove that ¡(t+1)= t¡(t).

1. Start from proving
Z
0

�/2

sin2n+1x dx <

Z
0

�/2

sin2nx dx <

Z
0

�/2

sin2n¡1x dx. Then apply Squeeze Theorem on
1<

I2n
I2n+1

<
I2n¡1
I2n+1

.
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