
Math 118 Winter 2015 Lecture 14 (Jan. 28, 2015)

� Integration by parts for de�nite integrals.

Theorem 1. (Integration by parts) If u; v are continuous on [a; b] an di�erentiable on
(a; b), and if u0; v 0 are integrable on [a; b], thenZ

a

b

u(x) v 0(x) dx=u(b) v(b)¡u(a) v(a)¡
Z
a

b

u0(x) v(x) dx: (1)

Proof. Let F = u v. Then F 0= u v 0+ u0 v. Since u; v are continuouson [a; b], they are also
integrable on [a; b]. Together with integrability of u0; v 0 we conclude F 0 is integrable on [a; b].
Application of the �rst version of FTC gives the desired result. �

Problem 1. Prove the integration by parts formula using de�nition of Riemann integral only.

Notation. It is often convenient to write u(b) v(b)¡u(a) v(a) as u vjab .

Example 2. Calculate Z
1

2

x lnxdx: (2)

Solution. We have Z
1

2

x lnx dx = 1
2

Z
1

2

lnxdx2

= 1
2

�
x2 lnxj12¡

Z
1

2

xdx
�

= 2 ln 2¡ 3
4
: (3)

Exercise 1. Calculate
Z
1

2

x3 (ln x)2dx.

� Change of variables for de�nite integrals.

Theorem 3. Let u be continuous on [a; b], di�erentiable on (a; b) and assume u0 is integrable
on [a; b]. If f is continuous on I := u([a; b]), thenZ

a

b

f(u(t))u0(t) dt=
Z
u(a)

u(b)

f(x) dx: (4)

Remark 4. Recall that in the case u(b)<u(a), the integral is understood asZ
u(a)

u(b)

f(x) dx=¡
Z
u(b)

u(a)

f(x) dx: (5)

Proof. We notice that, if we de�ne F (x) =
R
u(a)

x
f(t) dt, then F 0(x) = f(x) and it follows

from FTC Version 1 thatZ
u(a)

u(b)

f(x) dx=F (u(b))¡F (u(a)); (6)



On the other hand, if we set

G(t) :=F (u(t)) (7)

then by Chain rule

G0(t)= d
dt
F (u(t))=F 0(u(t))u0(t)= f(u(t))u0(t): (8)

Note that the last equality is a result of FTC Version 2 and only holds because f is continuous
at every u(t).

Next we check that f(u(t)) u0(t) is integrable: f(x); u(t) continuous =) f(u(t))
continuous =)f(u(t)) integrable =) f(u(t))u0(t) integrable since u0(t) is integrable.

Finally applying FTC Version 1 to G we haveZ
a

b

f(u(t))u0(t) dt=G(b)¡G(a)=F (u(b))¡F (u(a)): (9)

and the proof ends. Note that in this last step we need G to be continuous, which follows
from the continuity of f and of u. �

Remark 5. Note that we don't need u to be one-to-one!1 In particular, it may happen that
u([a; b]) =/ [u(a); u(b)].

Theorem 6. Let u(t): [a; b] 7!R be continuous on [a; b], di�erentiable on (a; b) and assume
u0 is continuous on [a; b]. Let f(x) be integrable on I := u([a; b]). Further assume that u is
strictly increasing or decreasing. ThenZ

a

b

f(u(t))u0(t) dt=
Z
u(a)

u(b)

f(x) dx: (10)

Proof. Wlog assume u is strictly increasing. Then u([a; b]) = [u(a); u(b)]. Further wlog

assume that a= 0; b= 1. Let Pn=
n
0; 1

n
; :::; 1

o
. Denote by Qn the corresponding partition

of [u(0); u(1)]:
n
u(0); u

�
1

n

�
; :::; u(1)

o
.

Exercise 2. Why is Qn a partition?

Denote by In :=
P

k=1
n f(u(cn;k))

�
u
�
k

n

�
¡u
�
k¡ 1
n

��
where cn;k2

�
k¡ 1
n
;
k

n

�
comes from

MVT:

u0(cn;k)=n

�
u

�
k
n

�
¡u
�
k¡ 1
n

��
: (11)

. As f is integrable on [u(0); u(1)] and u is continuous on [0; 1], we have

lim
n!1

In=
Z
u(a)

u(b)

f(x) dx (12)

Exercise 3. Prove (12).

By our choices of cn;k there holds

In=
X
k=1

n

f(u(cn;k))u0(cn;k)
�
k
n
¡ k¡ 1

n

�
: (13)

1. In higher dimensions, we do need the change of variable function to be one-to-one. To fully understand this issue, check
out �degree theory�.



Now we have

jU(f(u)u0; Pn)¡ Inj =
1
n

������
X
k=1

n "
sup

t2
h
k¡1
n

;
k

n

if(u(t))u0(t)¡ f(u(cn;k))u0(cn;k)
#������

= 1
n

������
X
k=1

n

sup
t2
h
k¡1
n

;
k

n

i [f(u(t))u0(t)¡ f(u(cn;k))u0(ck)]

������
6 1

n

�������
X
k=1

n  
sup

t2
h
k¡1
n

;
k

n

if(u(t))¡ f(u(cn;k))
!
u0(ck)

�������
+1
n

�������
X
k=1

n  
sup

t2
h
k¡1
n
;
k

n

i jf(u(t))j
!

sup
t2
h
k¡1
n
;
k

n

i ju0(t)¡u0(ck)j
�������: (14)

Exercise 4. Explain (14) and �nish the proof. �

Remark 7. Checking (13) we see that limn!1In=
Z
a

b

f(u(t)) u0(t) dt and the proof ends

as long as f(u(t)) u0(t) is integrable on [a; b]. However it is not clear to me yet whether
integrability of f and di�erentiability of u (without continuity of u0) could guarantee this.
Also it may happen that the monotonicity assumption could be dropped.

� Taylor expansion with integral remainder.

Example 8. Taylor expansion with integral remainder.
We can obtain Taylor expansion using integration by parts.

f(x)¡ f(a) =
Z
a

x

f 0(t) dt

= ¡
Z
a

x

f 0(t) d(x¡ t)

= ¡f 0(t) (x¡ t)jax+
Z
a

x

(x¡ t) df 0(t)

= f 0(a) (x¡ a)+
Z
a

x

(x¡ t) f 00(t) dt

= f 0(a) (x¡ a)¡ 1
2

Z
a

x

f 00(t) d(x¡ t)2

= f 0(a) (x¡ a)+ 1
2
f 00(a) (x¡ a)2+ 1

2

Z
a

x

(x¡ t)2 f 000(t) dt: (15)

Exercise 5. Prove

f(x)=
X
m=0

n
f (m)(a)

m!
(x¡ a)m+

Z
a

x (x¡ t)n
n!

f (n+1)(t) dt: (16)

The remainder
Z
a

x (x¡ t)n
n!

f (n+1)(t) dt is called �integral form of the remainder� for the

Taylor expansion of f . One can show that if f (n+1)(t) is continuous, then there is c2 (a; x)
such that Z

a

x (x¡ t)n
n!

f (n+1)(t) dt= f (n+1)(c)
(n+1)!

(x¡ a)n+1 (17)



which is exactly the Lagrange remainder.

Exercise 6. Prove (17).

The disadvantage of the Lagrange remainder is that

1. We have no knowledge of where c exactly is;

2. The dependence of c on xmay be rough. For example, we can di�erentiate the integral
remainder but not the Lagrange remainder (due to c(x) may not be di�erentiable).

On the other hand, there is no problem calculating

d
dx

�Z
a

x (x¡ t)n
n!

f (n+1)(t) dt
�
: (18)

Exercise 7. Calculate d

dx

h R
a

x (x¡ t)n

n!
f (n+1)(t) dt

i
:

Therefore in analysis it is usually advantageous to the integral form for the remainder.
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