Math 118 Winter 2015 Lecture 11 (Jan. 22, 2015)

- We have seen that rational functions $\frac{P(x)}{Q(x)}$ can in theory ${ }^{1}$ always be integrated. Now we show that another large class of functions also enjoys this property.
- Birational functions of $\cos x$ and $\sin x$.
- A polynomial of two variables is a sum of finitely many terms of the form $a x^{k} y^{l}$ where $a \in \mathbb{R}, k, l \in \mathbb{N} \cup\{0\}$, and x, y are the two variables.
- A birational function (or simply a rational function of x, y) is a function of the form $\frac{P(x, y)}{Q(x, y)}$ where P, Q are both polynomials of x, y.
- We claim that

$$
\begin{equation*}
\int \frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)} \mathrm{d} x \tag{1}
\end{equation*}
$$

can always be reduced, through a change of variable, to the integration of a rational function of a single variable, and therefore such integrals can in theory always be calculated.

- Examples.

$$
\begin{aligned}
& -\quad \int \tan x \mathrm{~d} x . \text { Here } P(x, y)=y, Q(x, y)=x \\
& -\quad \int \cos ^{n} x \mathrm{~d} x . \text { Here } P(x, y)=x^{n}, Q(x, y)=1 \\
& -\quad \int \frac{1}{\sin ^{n} x} \mathrm{~d} x . \text { Here } P(x, y)=1, Q(x, y)=y^{n} \\
& -\quad \int \cos ^{n} x \sin ^{m} x \mathrm{~d} x . \text { Here } P(x, y)=x^{n} y^{m}, Q(x, y)=1
\end{aligned}
$$

- Integration of $\frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)}$ through the universal change of variable.
- The universal change of variable is $t=\tan \left(\frac{x}{2}\right)$. We notice that

$$
\begin{align*}
\cos x & =\cos ^{2}\left(\frac{x}{2}\right)-\sin ^{2}\left(\frac{x}{2}\right)=\frac{1-t^{2}}{1+t^{2}} \tag{2}\\
\sin x & =2 \sin \frac{x}{2} \cos \frac{x}{2}=\frac{2 t}{1+t^{2}} \tag{3}\\
\mathrm{~d} x & =\mathrm{d}(2 \arctan u)=\frac{2}{1+t^{2}} \tag{4}
\end{align*}
$$

Thus under this change of variable we have

$$
\begin{equation*}
\int \frac{P(\cos x, \sin x)}{Q(\cos x, \sin x)} \mathrm{d} x=\int R(t) \mathrm{d} t \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
R(x)=\frac{P\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)}{Q\left(\frac{1-t^{2}}{1+t^{2}}, \frac{2 t}{1+t^{2}}\right)} \frac{2}{1+t^{2}} \tag{6}
\end{equation*}
$$

[^0]is rational.
Problem 1. Prove that $R(x)$ is rational.

- Examples.

Example 1. Calculate $\int \frac{\mathrm{d} x}{\cos x+\sin x}$.
Solution. We apply the change of variable $t=\tan \frac{x}{2}$. Then we have

$$
\begin{align*}
\int \frac{\mathrm{d} x}{\cos x+\sin x} & =\int \frac{1}{\frac{1-t^{2}}{1+t^{2}}+\frac{2 t}{1+t^{2}}} \frac{2}{1+t^{2}} \mathrm{~d} t \\
& =\int \frac{2}{1+2 t-t^{2}} \mathrm{~d} t . \tag{7}
\end{align*}
$$

We solve this integral using partial fractions. Solve $1+2 t-t^{2}=0$ gives $t_{1,2}=1 \pm \sqrt{2}$. Therefore $1+2 t-t^{2}=(1+\sqrt{2}-t)(1-\sqrt{2}-t)$ and we write

$$
\begin{equation*}
\frac{2}{1+2 t-t^{2}}=\frac{A}{t-(1+\sqrt{2})}+\frac{B}{t-(1-\sqrt{2})} \tag{8}
\end{equation*}
$$

and determine

$$
\begin{equation*}
A=-\frac{\sqrt{2}}{2}, \quad B=\frac{\sqrt{2}}{2} . \tag{9}
\end{equation*}
$$

Therefore

$$
\begin{align*}
\int \frac{2 \mathrm{~d} t}{1+2 t-t^{2}} & =\frac{\sqrt{2}}{2} \int\left[\frac{1}{t-(1-\sqrt{2})}-\frac{1}{t-(1+\sqrt{2})}\right] \mathrm{d} t \\
& =\frac{\sqrt{2}}{2} \ln \left|\frac{t-(1-\sqrt{2})}{t-(1+\sqrt{2})}\right|+C \tag{10}
\end{align*}
$$

Substituting back $u=\tan \left(\frac{x}{2}\right)$ we have

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{\cos x+\sin x}=\frac{\sqrt{2}}{2} \ln \left|\frac{\tan \left(\frac{x}{2}\right)-(1-\sqrt{2})}{\tan \left(\frac{x}{2}\right)-(1+\sqrt{2})}\right|+C \tag{11}
\end{equation*}
$$

Exercise 1. Calculate $\int \frac{\mathrm{d} x}{\cos x-\sin x}$.
Exercise 2. Calculate $\int \frac{\mathrm{d} x}{\cos ^{2} x+\sin x}$.
Example 2. Calculate $\int \frac{\mathrm{d} x}{1+2 \cos x}$.
Solution. We have $P(x, y)=1, Q(x, y)=1+2 y$. Thus the substitution $t=\tan \frac{x}{2}$ gives

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{1+2 \cos x}=\int \frac{1}{1+2 \frac{1-t^{2}}{1+t^{2}}} \frac{2}{1+t^{2}} \mathrm{~d} t=\int \frac{2}{3-t^{2}} \mathrm{~d} t \tag{12}
\end{equation*}
$$

Apply the method of partial fractions, we have

$$
\begin{equation*}
\int \frac{2}{3-t^{2}} \mathrm{~d} t=\frac{1}{\sqrt{3}}\left[\int \frac{\mathrm{~d} t}{\sqrt{3}-t}+\int \frac{\mathrm{d} t}{\sqrt{3}+t}\right]=\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{3}+t}{\sqrt{3}-t}\right|+C \tag{13}
\end{equation*}
$$

Substituting back $t=\tan \frac{x}{2}$, we have

$$
\begin{equation*}
\int \frac{\mathrm{d} x}{1+2 \cos x}=\frac{1}{\sqrt{3}} \ln \left|\frac{\sqrt{3}+\tan \frac{x}{2}}{\sqrt{3}-\tan \frac{x}{2}}\right|+C \tag{14}
\end{equation*}
$$

Exercise 3. Calculate $\int \frac{\mathrm{d} x}{1+2 \sin x+3 \cos x}$.

- Special cases.
- The universal change of variable always works, but may not be the most efficient approach.

Example 3. Calculate $\int \frac{\sin 2 x}{\sin ^{2} x+\cos x} \mathrm{~d} x$.
Solution. Let $t=\cos x$, then we have

$$
\begin{align*}
\int \frac{\sin 2 x}{\sin ^{2} x+\cos x} \mathrm{~d} x= & -2 \int \frac{t \mathrm{~d} t}{1+t-t^{2}} \\
= & 2 \int \frac{t}{\left(t-\frac{1+\sqrt{5}}{2}\right)\left(t-\frac{1-\sqrt{5}}{2}\right)} \mathrm{d} t \\
= & \int\left[\frac{1+\frac{1}{\sqrt{5}}}{t-\frac{1+\sqrt{5}}{2}}+\frac{1-\frac{1}{\sqrt{5}}}{t-\frac{1-\sqrt{5}}{2}}\right] \mathrm{d} t \\
= & \left(1+\frac{1}{\sqrt{5}}\right) \ln \left|t-\frac{1+\sqrt{5}}{2}\right|+\left(1-\frac{1}{\sqrt{5}}\right) \ln \left|t-\frac{1-\sqrt{5}}{2}\right|+C \\
= & \left.\left(1+\frac{1}{\sqrt{5}}\right) \ln \left|\cos x-\frac{1+\sqrt{5}}{2}\right|+\left(1-\frac{1}{\sqrt{5}}\right) \ln \right\rvert\, \cos x- \\
& \left.\frac{1-\sqrt{5}}{2} \right\rvert\,+C \\
= & \ln \left|1+\cos x-\cos ^{2} x\right|+\frac{1}{\sqrt{5}} \ln \left|\frac{\sqrt{5}+1-2 \cos x}{\sqrt{5}-1+2 \cos t}\right|+C \tag{15}
\end{align*}
$$

Remark 4. To compare, let's try the universal change of variable $t=\tan \left(\frac{x}{2}\right)$. We have

$$
\begin{align*}
\int \frac{\sin 2 x}{\sin ^{2} x+\cos x} \mathrm{~d} x & =\int \frac{2 \sin x \cos x}{\sin ^{2} x+\cos x} \mathrm{~d} x \\
& =\int \frac{2 \frac{2 t}{1+t^{2}} \frac{1-t^{2}}{1+t^{2}}}{\left(\frac{2 t}{1+t^{2}}\right)^{2}+\frac{1-t^{2}}{1+t^{2}}} \frac{2}{1+t^{2}} \mathrm{~d} t \\
& =\int \frac{4 t\left(1-t^{2}\right)}{4 t^{2}+1-t^{4}} \frac{2}{1+t^{2}} \mathrm{~d} t \tag{16}
\end{align*}
$$

We see that in this approach we have to deal with a much more complicated rational function.

- The following are the most important special cases.

Proposition 5. (Special Cases) Let $R(x, y)$ be birational and such that
a) $R(-x, y)=-R(x, y)$, or
b) $R(x,-y)=-R(x, y)$, or
c) $R(-x,-y)=R(x, y)$.

Then $\int R(\sin x, \cos x) \mathrm{d} x$ can be integrated through $t=\sin x, t=\cos x, t=\tan x$, respectively.

Proof. Let $R(x, y)=\frac{P(x, y)}{Q(x, y)}$ where P, Q are polynomials that share no common factor.
a) In this case we have

$$
\begin{equation*}
P(x, y)=R(x, y) Q(x, y) \tag{17}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
P(-x, y)=-R(x, y) Q(-x, y) \tag{18}
\end{equation*}
$$

Putting the two together we have

$$
\begin{equation*}
P(x, y)-P(-x, y)=R(x, y)[Q(x, y)+Q(-x, y)] . \tag{19}
\end{equation*}
$$

As P, Q are polynomials, they can be written as

$$
\begin{equation*}
P(x, y)=a_{n}(y) x^{n}+\cdots+a_{0}(y), \quad Q(x, y)=b_{m}(y) x^{m}+\cdots+b_{0}(y) . \tag{20}
\end{equation*}
$$

Now it is easy to check that

$$
\begin{equation*}
P(x, y)-P(-x, y)=x P_{1}\left(x^{2}, y\right), \quad Q(x, y)+Q(-x, y)=Q_{1}\left(x^{2}, y\right) \tag{21}
\end{equation*}
$$

where P_{1}, Q_{1} are polynomials.
Exercise 4. Finish the proof.
b) This part is left as exercise.

Exercise 5. Prove this part.
c) In this case we have $P(x, y)=R(x, y) Q(x, y)$ and $P(-x,-y)=R(x, y) Q(-x$, $-y)$. This gives

$$
\begin{equation*}
R(x, y)=\frac{P(x, y)+P(-x,-y)}{Q(x, y)+Q(-x,-y)} \tag{22}
\end{equation*}
$$

As $P(x, y), Q(x, y)$ consists of terms of the form $x^{k} y^{l}$, we see that all the terms with $k+l$ odd are cancelled in both numerator and denominator. Now notice that when $k+l$ is even, there always holds

$$
\begin{equation*}
x^{k} y^{l}=\left(\frac{y}{x}\right)^{l} x^{k+l}=\left(\frac{y}{x}\right)^{l}\left(x^{2}\right)^{(k+l) / 2} . \tag{23}
\end{equation*}
$$

Thus we have $P(x, y)+P(-x,-y)=P_{1}\left(\frac{y}{x}, x^{2}\right)$ and $Q(x, y)+Q(-x$, $-y)=Q_{1}\left(\frac{y}{x}, x^{2}\right)$ where P_{1}, Q_{1} are polynomials.

Exercise 6. Finish the proof.

- More examples of the special cases.

Example 6. Calculate $\int \frac{\cos ^{3} x}{1+\sin ^{2} x} \mathrm{~d} x$.

Solution. We can check that $P(x, y)=x^{3}, Q(x, y)=1+y^{2}$ which gives $R(-x$, $y)=-R(x, y)$ so that substitution $t=\sin x$ would work. But of course it is easy to observe that

$$
\begin{align*}
\int \frac{\cos ^{3} x}{1+\sin ^{2} x} \mathrm{~d} x & =\int \frac{\cos ^{2} x}{1+\sin ^{2} x} \mathrm{~d} \sin x \\
& =\int \frac{1-\sin ^{2} x}{1+\sin ^{2} x} \mathrm{~d} \sin x \\
& =\int \frac{1-t^{2}}{1+t^{2}} \mathrm{~d} t \quad(t=\sin x) \\
& =\int\left[-1+\frac{2}{1+t^{2}} \mathrm{~d} t\right] \\
& =-t+2 \arctan t+C \\
& =-\sin x+2 \arctan (\sin x)+C \tag{24}
\end{align*}
$$

Example 7. Calculate $\int \cos ^{4} x \mathrm{~d} x$.
Solution. We have $R(x, y)=x^{4}$. Clearly $R(x, y)=R(-x,-y)$. Thus we set $t=\tan x$ and obtain

$$
\begin{align*}
\int \cos ^{4} x & =\int \cos ^{6} x \mathrm{dtan} x \\
& =\int \frac{1}{\left(1+t^{2}\right)^{3}} \mathrm{~d} t \tag{25}
\end{align*}
$$

To calculate this integral we apply integration by parts:

$$
\begin{align*}
\arctan t & =\int \frac{\mathrm{d} t}{1+t^{2}} \\
& =\frac{t}{1+t^{2}}+2 \int \frac{t^{2}}{\left(1+t^{2}\right)^{2}} \mathrm{~d} t \\
& =\frac{t}{1+t^{2}}+2 \arctan t-2 \int \frac{\mathrm{~d} t}{\left(1+t^{2}\right)^{2}} . \tag{26}
\end{align*}
$$

Therefore

$$
\begin{equation*}
\int \frac{\mathrm{d} t}{\left(1+t^{2}\right)^{2}}=\frac{1}{2}\left[\frac{t}{\left(1+t^{2}\right)}+\arctan t\right]+C . \tag{27}
\end{equation*}
$$

Now we integrate by parts again:

$$
\begin{align*}
\int \frac{\mathrm{d} t}{\left(1+t^{2}\right)^{2}} & =\frac{t}{\left(1+t^{2}\right)^{2}}+4 \int \frac{t^{2}}{\left(1+t^{2}\right)^{3}} \mathrm{~d} t \\
& =\frac{t}{\left(1+t^{2}\right)^{2}}+4 \int \frac{\mathrm{~d} t}{\left(1+t^{2}\right)^{2}}-4 \int \frac{\mathrm{~d} t}{\left(1+t^{2}\right)^{3}} . \tag{28}
\end{align*}
$$

Therefore

$$
\begin{align*}
\int \frac{\mathrm{d} t}{\left(1+t^{2}\right)^{3}} & =\frac{1}{4}\left[3 \int \frac{\mathrm{~d} t}{\left(1+t^{2}\right)^{2}}+\frac{t}{\left(1+t^{2}\right)^{2}}\right] \\
& =\frac{3 t}{8\left(1+t^{2}\right)}+\frac{t}{4\left(1+t^{2}\right)^{2}}+\frac{3}{8} \arctan t+C . \tag{29}
\end{align*}
$$

Substituting back $t=\tan x$, we finally arrive at

$$
\begin{align*}
\int \cos ^{4} x \mathrm{~d} x & =\frac{3}{8} \tan x \cos ^{2} x+\frac{1}{4} \tan x \cos ^{4} x+\frac{3}{8} x+C \\
& =\frac{3}{8} \sin x \cos x+\frac{1}{4} \sin x \cos ^{3} x+\frac{3}{8} x+C \tag{30}
\end{align*}
$$

Exercise 7. Calculate $\int \sin ^{4} x \mathrm{~d} x$ using $t=\tan x$.

[^0]: 1. and in practice
