
Math 118 Winter 2015 Lecture 10 (Jan. 21, 2015)

� The method of partial fractions: To evaluate
Z

P (x)
Q(x)

dx where P ; Q are polynomials,

1. Check deg P < deg Q. If not perform P = Q P0 + R with P0; R polynomials and
degR< degQ and writeZ

P (x)
Q(x)

dx=
Z
P0(x) dx+

Z
R(x)
Q(x)

dx: (1)

2. Factorize Q(x):

Q(x)= (x¡ a1)k1���(x¡ al)kl(x2+ p1x+ q1)m1���(x2+ prx+ qr)mr (2)

where each pi
2< 4 qi for all i=1; 2; :::; r.

3. Calculate the partial fraction resolution of R

Q
:

R(x)
Q(x)

= A11
x¡ a1

+ ���+ A1k1
(x¡ a1)k1

+���+ Al1

x¡ al
+ ���+ Alkl

(x¡ al)kl

+ B11x+C11
x2+ p1x+ q1

+ ���+ B1m1x+C1m1

(x2+ p1x+ q1)m1

+���+ Br1x+Cr1
x2+ prx+ qr

+ ���+ Brmrx+Crmr

(x2+ prx+ qr)mr
: (3)

Note that the number of coe�cients to determine is the same as degQ.

4. Integrate:Z
P (x)
Q(x)

dx =
Z
P0(x) dx+

Z
A11
x¡ a1

dx+ ���+
Z

A1k1
(x¡ a1)k1

dx

+���+
Z

Br1x+Cr1
x2+ prx+ qr

dx+ ���+
Z

Brmrx+Crmr

(x2+ pr x+ qr)mr
dx: (4)

Exercise 1. Let deg P > deg Q. Assume that we forgot to do Step 1. What could go wrong?

Remark 1. Step 1 is trivial. Steps 3 and 4 may be tedious but can always be done with
enough time. On the other hand, the factorization of Q(x) depends on our ability to �nd all
solutions to the equation Q(x)= 0. This is known to be in general not possible.

� Hermite's method.

� From (3) it is clear thatZ
P (x)
Q(x)

dx=F1(x)+F2(x)+F3(x) (5)

where F1(x) is rational, F2(x) is of the form
P A

lnjx¡aj while F3 is of the formP
ln(x2+ p x+ q)+

P
arctan(r x+ s).1

Problem 1. Prove that f(x) :=
P

i=1

k
Ai lnjx¡aij is not rational. That is there is no polynomials

P (x); Q(x) such that f(x)= P (x)

Q(x)
for all x, unless all Ai=0. (Hint:2 )

1. If we allow complex numbers, arctan could be reduced to ln and x2+ p x+ q can always be factorized. Then we haveZ
P (x)
Q(x)

dx=Rational function+
X A

lnjx¡ aj : (6)



Problem 2. For those who know partial derivatives: Let Q(x) = (x ¡ a1)
k1���(x ¡ al)

kl and
deg P <deg Q. ProveZ

P (x)

Q(x)
=

1

(k1¡ 1)!���(kl¡ 1)!
@
P
ki¡l

@a1
k1¡1���@alkl¡1

"X
i=1

l
P (ai)

Q0(ai)
lnjx¡ aij

#
: (7)

Check: Z
dx

[(x¡ a) (x¡ b)]2 =
@2

@a@b

�
1

a¡ b ln
����x¡ ax¡ b

�����: (8)

(Hint:3 )

� Charles Hermite (1822 � 1901) proposed in 1872 a method that calculates F1(x)
without complete factorization of Q(x).

� Square-free factorization.
Let Q(x) be a polynomial of degree n. Its �square-free factorization� is the

factorization

Q=Q1Q2
2Q3

3���Qn
n (10)

where each Qi is �square-free�, there is

8polynomial P not a constant; P jQi=)P 2jQi; (11)

and furthermore for every i=/ j, Qi; Qj are relatively prime.

Exercise 2. Prove that for every i=/ j, Qi
i and Qj

j are relatively prime.

Exercise 3. Can you de�ne �square-free� factorization for a natural number?

Example 2. Let Q= (x+ 1) (x¡ 1)2 (x2+ 1). Then we have Q1= (x+ 1) (x2+ 1),
Q2=(x¡ 1), and Q3=Q4=Q5=1.

Lemma 3. Let P be a polynomial with deg P < deg Q. We have the partial fraction
resolution:

P
Q
= P1
Q1

+ P2
Q2
2
+ ���+ Pn

Qn
n (12)

where degPi<i degQi for all i=1; 2; :::; n.

The proof is by induction and we omit it.
Thus Z

P
Q
dx=

Z
P1
Q1

dx+ ���+
Z

Pn
Qn
n dx (13)

and all we need to do is be able to integrate rational functions of the form P

Qk
where

Q is square-free.

� The rational part of
Z

P

Qk
dx.

Lemma 4. Q(x) is square-free if and only if Q and Q0 are relatively prime.

Proof. Exercise. �

2. Consider f 0(x).

3. Prove
P
Q
=

1
(k1¡ 1)!���(kl¡ 1)!

@
P
ki¡l

@a1
k1¡1���@al

kl¡1

�
P
Q0

�
(9)

where Q0(x)= (x¡ a1)���(x¡ al).



Corollary 5. Let P be arbitrary. There are polynomials C;D such that

CQ+DQ0=P: (14)

Furthermore we can take degC < degQ0; degD< degQ.

Proof. Omitted. �

Thus we haveZ
P

Qk
dx =

Z
CQ+DQ0

Qk
dx

=
Z C + 1

k¡ 1 D
0

Qk¡1 dx¡ D

(k¡ 1)Qk¡1 : (15)

We notice that apply the same procedure to the �rst integral would �rst reduce the
power to Qk¡2. This can be k¡ 1 times untile we haveZ

P

Qk
dx= rational function+

Z
R
Q
dx: (16)

Exercise 4. Prove that
Z

R

Q
dx is not rational.

Example 6. Calculate
Z

4x9+ 21x6+2x3¡ 3x2¡ 3
(x7¡x+1)2

dx.4

Solution. We have Q(x) = x7¡ x+ 1 which gives Q0(x) = 7 x6¡ 1. We easily check
that Q; Q0 are relatively prime and therefore Q is square-free and Hermite's method
applies.

To �nd C;D such that

C(x) (x7¡x+1)+D(x) (7x6¡ 1)= 4x9+ 21x6+2x3¡ 3x2¡ 3 (17)

we write C(x)= c5x
5+ ���+ c0 and D(x)=d6x

6+ ���+d0 and solve the 13�13 linear
system to obtain C(x)=¡3x2; D(x)=x3+3. Now as C +D 0=0, (15) reduces toZ

P

Q2
=¡D

Q
=¡ x3+3

x7¡x+1
: (18)

Lemma 7. Let Q be square free.
Z

P

Q2 dx is rational if and only if PQ00¡ P 0 Q0 is

divisible by Q.

Proof. We �rst prove �if�. Let C;D be such that CQ+DQ0=P . Then

PQ00¡P 0Q0=CQQ00¡C 0QQ0¡ (C +D 0) (Q0)2: (19)

The assumption now becomes Qj (C +D 0) (Q0)2. As (Q; Q0)= 1, there must hold Qj
(C +D 0), that is there is a polynomial H such that C +D 0

Q
=H . Now (15) givesZ

P

Q2
dx=¡D

Q
+

Z
H (20)

which is rational.

4. Taken from G. H. Hardy, The Integration of Functions of a Single Variable, 2ed, Cambridge, 1928.



Next we prove �only if�. By (15)
Z

P

Q2
dx is rational if and only if Qj (C +D 0).

But this immediately gives Qj (PQ00¡P 0Q0). �

Problem 3. Let Q be square-free. Prove that
Z

P

Q3
dx is rational if and only if P (3 (Q00)2¡

Q0Q000)¡ 3P 0Q0Q00+P 00 (Q0)2 is divisible by Q.

� The calculation of square-free factoriztion (without actual factorization to irreducible
factors!)

Lemma 8. Let Q(x) = (x¡ a1)k1���(x¡ al)kl and Q0(x) = (x¡ a1) (x¡ a2)���(x¡ al).
Then

Q0(x)=
Q(x)

gcd(Q; Q0)
: (21)

Proof. Exercise. �

Using Lemma 8 repeatedly, we can carry out the square-free factorization for any
polynomial.

Example 9. Q(x)=x8+6x6+ 12x4+x2.5

Solution. We could have �rst factorize Q= x2 (x6+ 6 x4+ 12 x2+ 1) and factorize
x6+6x4+ 12x2+1. However we do not do this for the illustration of the method.

We have Q0(x)= 8x7+ 36x5+ 48x3+ 16x and it can be calculated

gcd(Q; Q0)=x5+4x3+4x: (22)

Thus Q0(x) = x3+2 x. If we pretend that we cannot factorize Q0, we see that there
are three (complex) roots a1; a2; a3 to Q(x) and Q0(x)= (x¡a1) (x¡a2) (x¡a3). To
�gure out the power of each factor, we calculate

gcd(Q0; gcd(Q; Q0))=x3+2x: (23)

Thus we have Q(x)=Q0
2 (x2+2)=

�
Q0

x2+2

�
2
(x2+2)3=x2 (x2+2)3. As both x;x2+2

are square-free, we see that we have obtained the square-free factorization of Q.

Exercise 5. Explain why Q0

x2+2
must be a polynomial.

Problem 4. Calculate
Z

x7¡ 24 x4¡ 4 x2+8x¡ 8
x8+6x6+ 12 x4+x2

dx through 1) partial fraction, 2) Hermite's

method.

� Partial fraction for counting.

Example 10. 6Let a1; :::; ak be distinct natural numbers such that the only common factor
is 1. Let C(n) be the number of ways to write n as a sum of numbers from A= fa1; :::; akg,
a number can appear more than one times, and the order of the addition does not matter.
One example of such problem is �How many ways are there to break 100 dollars into coins?�

We claim that C(n) is the coe�cient of zn in the expansion of

(1+ za1+ z2a1+ ���) ��� (1+ zak+ z2ak+ ���): (24)

5. Taken fromM. Bronstein, Symbolic Integration: Transcendental Functions, 2ed, Springer, 2005.

6. Taken from Donald J. Newman, Analytic Number Theory, GTM177, Springer, 1998.



Thus recalling the Taylor expansion formula we formally haveX
C(n) zn= 1

(1¡ za1)���(1¡ zak) : (25)

Exercise 6. Explain why the argument (24) =) (25) is only formal. What do we need to prove here?

We claim that the only common factor in 1¡ za1; :::; 1¡ zak is 1¡ z.7 Then we know in
the partial fraction reduction

1
(1¡ za1)���(1¡ zak) =

c

(1¡ z)k
+ other terms. (26)

As each term in �other terms� is of the form c0

(�¡ z)k0
with k 0<k, we see that the leading term

in C(n) comes from c

(1¡ z)k . To �gure out c, we multiply both sides by (1¡z)k and take limit
z¡! 1 to obtain

c= 1
a1���ak

: (27)

Exercise 7. Prove (27).

Problem 5. Prove that C(n)� nk¡1

a1���ak (k¡ 1)!
in the sense that the ratio between the two ¡!1 as n¡!1.

7. To see this recall that the roots of 1¡ za are ei�m, m=0; 1; 2; :::; a¡ 1, with �m :=
m

a
2� i.
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